

UNIVERSITY OF CALIFORNIA,
IRVINE

ATLAS Particle Detector CSC ROD Software Design and Implementation

AND

Addition of K Physics to Chi-Squared Analysis of FDQM

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Physics

by

Donovan Lee Hawkins

Dissertation Committee:
Professor Andrew Lankford, Chair

Professor Dennis J. Silverman
Professor Myron Bander

2005

© 2005 Donovan Lee Hawkins

 ii

The dissertation of Donovan Lee Hawkins
is approved and is acceptable in quality
and form for publication on microfilm

Committee Chair

University of California, Irvine
2005

 iii

DEDICATION

To

my mother

who has always been there

and

my grandfather

who I know wanted to be here now.

 iv

Table of Contents

List of Tables ... vi
List of Figures ... vii
Acknowledgements.. ix
Curriculum Vitae .. x
Abstract of the Dissertation ... xi
Motivation... 2

Introduction/Summary of Results ... 2
Higgs Physics.. 3
Examination of Channels Used for Higgs .. 7

Detector... 9
Description of CERN and the LHC .. 9
Description of ATLAS and the Muon Subsystem .. 11
Trigger/DAQ Chain and the Role of the ROD ... 15
The ATLAS CSC ROD and GPUs ... 16

Design ... 18
SPU vs. RPU... 18
Events and data flow in the ROD ... 19
Requirements .. 22
The HPU-DPU relationship .. 23
The DPU software framework .. 24
Policies and design rules for the software... 31

SPU ... 32
Sparsification algorithm.. 32
Sparsified data format ... 36
Implementation ... 39
Calibration array ... 44

RPU... 46
Neutron rejection algorithm.. 46
Neutron-rejected data format .. 47
Implementation ... 50
Calibration array ... 51

Implementation ... 52
File Layout .. 52
Status Structure ... 55
Policy System.. 56
Input/Output Queues... 57
Task Priority Queues... 59
Task Heap ... 60

Testing... 62
Real data, realistic data, and arbitrary data ... 62
Testing vs. design for performance... 63
Faults and Warnings ... 64
Accuracy testing.. 65
Performance testing .. 67

 v

Conclusion .. 69
Summary ... 69
Future work... 70

Motivation... 72
Introduction... 72
CP violation theory in the K system ... 73
FCNC in the Standard Model and beyond.. 77
The CKM program.. 81

Theory ... 82
Calculation of ε ... 82

Calculation of
ε
ε 'Re ... 84

Calculation of ()ννπ ++ →KBr .. 87

Calculation of ()SDLKBr −+→ μμ ... 89

Error analysis .. 91
Results... 92

Confidence plots ... 92
Future work... 96

References... 98
Appendix A: ATLAS Muon CSC ROD Software.. 101

DPU documentation for the HPU ... 101
DPU documentation for the plug-in writer ... 113
Software source code .. 128

Appendix B: K Physics in the FDQM .. 129
Software source code .. 129

 vi

List of Tables
Table 1: Muon chamber numerics [3]... 13
Table 2: Table of GPU types [33]... 17
Table 3: Parameters used for various input and output modes (see text for description) . 19
Table 4: Management System Priority decision table .. 28
Table 5: CSC rate numerology ... 33

Table 6:)(j
ir coefficient dependence on)4(

MS
Λ [14] .. 85

Table 7: NLX dependence on cm and)4(
MS

Λ [13] .. 87

Table 8: NLY dependence on cm and)4(
MS

Λ [13].. 90

 vii

List of Figures
Figure 1: Aharonov-Bohm effect.. 3
Figure 2: Potential plots for a local gauge-invariant phi-fourth theory 5
Figure 3: Higgs branching ratios as a function of mass [26] .. 7
Figure 4: Signal significance as a function of Higgs mass after one year of high

luminosity running [1] .. 8
Figure 5: LHC and experiments map [5] .. 9
Figure 6: The ATLAS detector [1] ... 11
Figure 7: ATLAS detector systems [6]... 12
Figure 8: Breakdown of ATLAS systems [7] ... 12
Figure 9: Muon system [3].. 13
Figure 10: Diagram of CSC planes [3] ... 14
Figure 11: Photo of assembled CSC [42] ... 14
Figure 12: Trigger chain and data flow in ATLAS [2]... 15
Figure 13: CSC ROD interconnection diagram [33] .. 16
Figure 14: Photo of partially-complete CSC ROD [42] ... 16
Figure 15: Photo of GPU daughterboard [42]... 17
Figure 16: GPU block diagram [33] .. 17
Figure 17: Generic Event format .. 20
Figure 18: Data flow in the ROD.. 21
Figure 19: High-level block diagram of DPU software framework 24
Figure 20: Management System flowchart ... 25
Figure 21: Color-coded Priority levels ... 27
Figure 22: HAL System diagram.. 30
Figure 23: In-time pulse (lines every 25 ns, squares are phase B samples, circles are

phase C) .. 32
Figure 24: In-time pulses (lines every 25 ns, squares are phase B samples, circles are

phase C) .. 33
Figure 25: Out-of-time pulses (lines every 25 ns, squares are phase B samples, circles are

phase C) .. 33
Figure 26: Side 1 loop kernel for OOOOTTEElliimmiinnaattee(()) ... 39
Figure 27: Class hierarchy for the input/output queues .. 57
Figure 28: Allocation of memory between the two priority queues with free space

between ... 59
Figure 29: A typical allocation of large and small chunks in the Task heap 60
Figure 30: Test setup... 65
Figure 31: SU(3) octet showing the K meson family in Iz - Y space [10]........................ 73
Figure 32: One of two box diagrams for neutral kaon mixing ... 73
Figure 33: Relationships and approximations for the flavor basis matrix elements [21] . 75
Figure 34: Quark flavor cannot change in a Standard Model neutral interaction............. 77
Figure 35: The Standard Model does allow FCNC through penguin (left) and box (right)

diagrams.. 78
Figure 36: Effective vertices for FCNC, idisi VV *=λ [12] ... 79
Figure 37: Common places where sign conventions and constant definitions can differ. 80

 viii

Figure 38: Snippet of the FORTRAN code for the added K physics experiments........... 81
Figure 39: Mathematica code for the computation of errors .. 91
Figure 40: Plot of ρ vs. η in the Standard Model, including K physics experiments [25]

... 92
Figure 41: Part of same plot showing which experiments correspond to which lines...... 92
Figure 42: Plot of ρ vs. η in the FDQM [25] ... 93
Figure 43: Plot of ρ vs. η in the FDQM for (a) 12sin −=α , (b) 02sin =α , (c)

12sin =α [25] .. 94

Figure 44: Plot of
expε

ε BSM vs. 13δ in the FDQM [25].. 94

Figure 45: Plot of sdUIm vs. sdURe (in units of 410−) [25] .. 95
Figure 46: Layout of Commands in CIB memory (begin at the right) 106
Figure 47: Memory layout for Default Decode Command... 108
Figure 48: Memory layout for Non-Default Decode Command 108
Figure 49: Memory layout for Function Command.. 108
Figure 50: Memory layout for Multi-Decode Command ... 109
Figure 51: Memory layout for Multi-Function Command ... 109

 ix

Acknowledgements

I would like to thank the members of my committee for their time and effort. In particular
I would like to thank my thesis advisors, Drs. Lankford and Silverman, for their
suggestions and revisions. I would also like to thank Drs. Bander, Lankford, and
Silverman for their support as thesis advisors both present and previous. Finally, I would
like to thank Dr. Bander for his suggestions regarding my selection of these thesis topics.

 x

Curriculum Vitae

Donovan Lee Hawkins

1996 B.S. in Physics with a minor in Mathematics, University of
California, Irvine

1998 M.S. in Physics, University of California, Irvine

2005 Ph.D. in Physics, University of California, Irvine

FIELD OF STUDY

Particle Physics

PUBLICATIONS

Hawkins, Donovan et al.: The Interface Vibrational Contribution to the
Thermodynamic Functions of the System of Liquid and Solid Separated by
a Planar Interface, Solid State Communications 103: 381, 27 March 1997

Hawkins, Donovan et al.: Phonon contribution to wetting phenomena:
macroscopic theory, Physics Letters A234: 225, 21 July 1997

Dailing, J. et al.: Off-Detector Electronics for a High-Rate CSC Detector,
PROCEEDINGS of the Sixth Workshop on Electronics for LHC
Experiments, 11 September 2000

Dailing, J. et al.: Performance and Radiation Tolerance of the ATLAS
CSC On-Chamber Electronics, PROCEEDINGS of the Sixth Workshop
on Electronics for LHC Experiments, 11 September 2000

Hawkins, Donovan and Silverman, Dennis: Isosinglet down quark mixing
and CP violation experiments, Phys. Rev. D66: 16008, 31 July 2002

Drego, N. et al.: Off-Detector Electronics for High-Rate CSC Detector,
IEEE Transactions on Nuclear Science 51: 461, June 2004

 xi

Abstract of the Dissertation

ATLAS Particle Detector CSC ROD Software Design and Implementation

And

Addition of K Physics to Chi-Squared Analysis of FDQM

By

Donovan Lee Hawkins

Doctor of Philosophy in Physics

University of California, Irvine, 2005

Professor Andrew Lankford, Chair

In this thesis I present a software framework for use on the ATLAS muon CSC readout

driver. This C++ framework uses plug-in Decoders incorporating hand-optimized

assembly language routines to perform sparsification and data formatting. The software is

designed with both flexibility and performance in mind, and runs on a custom 9U VME

board using Texas Instruments TMS360C6203 digital signal processors. I describe the

requirements of the software, the methods used in its design, and the results of testing the

software with simulated data.

I also present modifications to a chi-squared analysis of the Standard Model and Four

Down Quark Model (FDQM) originally done by Dr. Dennis Silverman. The addition of

four new experiments to the analysis has little effect on the Standard Model but provides

important new restrictions on the FDQM. The method used to incorporate these new

experiments is presented, and the consequences of their addition are reviewed.

 1

PART I

ATLAS Muon CSC ROD Software

 2

Motivation

Introduction/Summary of Results
The primary goal of a particle detector is to provide the information necessary to
reconstruct what occurred during a collision. Particles must be identified, their momenta
determined, and a quick decision made whether to record the data for offline analysis.
Specialized hardware and software is needed to digitize and process the signals from
detectors and pass them on for analysis and storage. In the ATLAS particle detector, the
first tier of this process is the readout driver (ROD). These are custom boards that convert
data for different detector subsystems into a common format. The RODs allow the
remainder of the data processing chain to be designed independently of the design of the
individual detector subsystems.

Only a tiny fraction of a percent of the collisions will be saved in ATLAS. In the muon
CSC subsystem, the ROD is responsible for a significant amount of data reduction by
suppressing channels containing only noise and eliminating data that comes from times
other than the trigger of interest. This requires a significant amount of data processing
power to apply this reduction at the 100kHz design trigger rate. By using high-speed
digital signal processor (DSP) chips, we can achieve both high performance and a high
degree of flexibility when compared to a traditional FPGA design. In fact, the resulting
system has turned out to be flexible enough to handle a number of unexpected data
formats used during testing without modification of the core software framework. This
fact has both leveraged the effort put into this system and provided an early test bed for
exercising the software and confirming its proper operation.

Currently the software has reached a level of performance necessary to complete all of
the processing required in ATLAS, and has been tested to ensure proper operation
without errors. Further testing on the algorithms and implementation using Monte Carlo
studies is needed to confirm earlier predictions on the rejection and acceptance rates.

 3

Higgs Physics

Introduction
We begin with a brief examination of the connection between phase and the
electromagnetic field. This is NOT a calculation (the canonical replacement should be
done before solving) but it is still illuminating.

• Classical gauge transformation (4-vector notation):
()xAA Λ∂+→ μμμ

• Plane-wave solution in quantum mechanics (4-vector notation):

μ
μ xipe=Ψ

• Canonical replacement for introducing E&M to quantum mechanics (4-vector

notation):

μμμ eAppem −=

• Resulting plane-wave solution for quantum + E&M (NOT a valid step):

() μ
μμ xeApie −=Ψ

• Resulting gauge transformation:

()() () Ψ=→Ψ Λ∂−Λ∂−− μ
μ

μ
μμμ xxiexxeeApi ee

This hints at the fact that the gauge term Λ causes a phase shift in the wave function.
Solving the equations properly with integration would eliminate the derivative in the
exponent. In retrospect, this fact is not surprising given the well-known Aharonov-Bohm
effect where a difference in phase is related to the line integral of the vector potential.

∫ ⋅=
path

Aldphase

Figure 1: Aharonov-Bohm effect

 4

We are now inspired to believe that a quantum phase that is an arbitrary function of space
and time (called a local gauge transformation) is analogous to a gauge transformation in
E&M. Such transformations don't change the physics, so we would like to examine a
theory that includes this symmetry. Clearly a phase shift is of interest when we have a
complex scalar field, which is a straightforward extension of a real scalar field.

• Real scalar field (simplest case with only dynamic and mass terms):
2 21 1

2 2
mμ

μφ φ φ= ∂ ∂ −L

() ()2 21 1 0
2 2

m mμ μ μ
μ μ μ

μ
φ φ φ φ

φφ

⎛ ⎞∂ ∂ ⎛ ⎞⎜ ⎟∂ − = ∂ ∂ + ∂ + = ∂ ∂ + =⎜ ⎟⎜ ⎟ ∂∂ ∂ ⎝ ⎠⎝ ⎠

L L

• Complex scalar field (simplest case with only dynamic and mass terms):

2* *mμ
μφ φ φ φ= ∂ ∂ −L

• Global gauge transformation is a symmetry:

φφ Λ−→ ie , ** φφ Λ→ ie

• Local gauge transformation is not but should be:
()φφ xie Λ−→ , () ** φφ xie Λ→

() () ()φφφ μμμ
xixi exie Λ−Λ− Λ∂−∂→∂

• Introduce a new field μA to solve the problem:

() () () () ()φφφφ μμμμμ
xixixi eieAexieieA Λ−Λ−Λ− +Λ∂−∂→+∂

() () ()φφφ μμμ
xixi exieieAieA Λ−Λ− Λ∂+→

()xeAeA Λ∂+→ μμμ

• Complex scalar field invariant under local gauge transformations:

() () ()()2 2* * * *ieA ieA m D D mμ μ μ
μ μ μφ φ φ φ φ φ φ φ= ∂ + ∂ − − = −L

The μA field, contained within the covariant derivative μD , is in exactly the right

place to be the electromagnetic field in a canonical replacement. In order to treat this field
as a particle (the photon), we need to add a term that will produce the standard equations
of electromagnetism in the resulting equations of motion for the μA field.

 5

μννμμν AAF ∂−∂=

()() 2 1* *
4

D D m F Fμ μν
μ μνφ φ φ φ= − −L

() ()[] νννμν
μ φφφφ eJDDieF =−=∂ **

For this photon to be massive, we would need a term like 21
2 m A Aμγ γ μ=L . However,

this is not local gauge invariant so it is not allowed. This is consistent with what we know
of photons and does not bother us. However, there are other forces such as the weak
interaction that have massive force carriers. It would be nice to find a way to use the
same mechanism to introduce massive force carriers as well. The solution is called the
Higgs mechanism, and it can be seen most easily using a simple scalar field theory.

• "Phi-fourth" theory:

()22* * *μ
μφ φ μ φ φ λ φ φ= ∂ ∂ − −L

• Local gauge invariant phi-fourth theory:

()() ()22 1* * *
4

D D F Fμ μν
μ μνφ φ μ φ φ λ φ φ= − − −L

μμμ ieAD +∂=

• Ground state is the minimum of the "potential":

422)(φλφμφ +=V

 02 >μ : 02 <μ :

minimum at 0=φ minimum at
λ
μφ

2

2−
== v

Figure 2: Potential plots for a local gauge-invariant phi-fourth theory

 6

• Perform a slight change of variable:
χφ += v

()() ()

()
()() ()

22

2 2

2 2 2

1* 2 * *
4

2 Re 2 Im

2 2Re * 2Re 2Im

D D v F F

e v v A A ievA

v v v

μ μν
μ μν

μ μ
μ μ

χ χ λ χ χ λ χ χ

χ χ

λ χ χ χ λ χ χ

= + − −

+ + − ∂

− + − −

L

• The χ field is no longer physical, but our photon has acquired a mass term:

21
2

m A Aμγ μ=L

evm 2=γ

• We can instead select new independent fields η and ξ :

()ξηφ iv ++=
2

1

2 2 3 4

2 2 4

2 2
2 2

2 2 2

1 2
2
1 1
2 4

2
2

2 2 2

v v

v F F

e v v A A e A

e A evA v

μ
μ

μ μν
μ μν

μ μ
μ μ

μ μ
μ μ

η η λ η λ η λη

ξ ξ λ ξ λξ

η ξ η ξ η

η ξ ξ λη ξ λ ηξ

= ∂ ∂ − − −

+ ∂ ∂ + − −

⎛ ⎞+
+ + + − ∂⎜ ⎟⎜ ⎟

⎝ ⎠

+ ∂ + ∂ − −

L

The unphysical ξ field can be eliminated in the unitarity gauge φφ φ
φ

Re
Imtan 1−

→
i

e .
Thus, we have absorbed the imaginary part of φ to become the extra degree of freedom
needed for the μA field to acquire a mass. The remaining real part of φ becomes a

massive real scalar field. We can apply the same technique to the electroweak Lagrangian

to generate the massless photon A, the massive ±W and Z , and a new massive particle
called the Higgs. A similar mechanism can generate quark and lepton masses via
interactions with the Higgs field by assuming a coupling between the fermion currents
and the Higgs with strength proportional to the fermion mass.

 7

Examination of Channels Used for Higgs
Because the coupling of the Higgs to fermions is proportional to the mass of the
fermions, the Higgs will generally decay into the most massive particles that are
kinematically available to it. Which decay that is will depend on the currently unknown
mass of the Higgs.

Figure 3: Higgs branching ratios as a function of mass [26]

Branching ratio is not the whole story, however. What matters is how that branching ratio
compares to the background that will interfere with its identification. This is given in
terms of signal significance, which is the number of signal events expected divided by the
square root of the number of background events expected.

Because there is a high background of QCD jets, it will be difficult to detect the Higgs
decaying to a quark-antiquark pair. For a Higgs mass of less than 150 GeV where these
channels are important, it is necessary to look for a Higgs being produced together with
other heavy particles to reduce the background.

 8

For a Higgs mass between 120 GeV and 160 GeV we start to see the production of a
single W or Z boson together with a corresponding virtual W or Z boson, which then
decay to four leptons. For the Z bosons we get llllZZH →→ * (eeee , μμμμ , or

μμee), while the W bosons have the process νν llWWH →→ * . Because the
neutrinos can only be inferred kinematically, the Z process provides more information for
reconstruction and is preferable in spite of a lower cross section.

These processes reach even greater importance as we cross the mass thresholds that allow
for the production of two on-shell bosons. From a Higgs mass around 180 GeV up to 700
GeV, the four lepton decay of two on-shell Z bosons is called the "gold-plated channel"
because the background is continuum Z production. A pair of Z bosons produced from
the single-body decay of a Higgs concentrate the momentum of the resulting leptons in
opposite directions. This, combined with the known mass of the on-shell Z
intermediaries, helps reduce the background from continuum Z bosons.

Figure 4: Signal significance as a function of Higgs mass after one year of high luminosity running [1]

 9

Detector

Description of CERN and the LHC
CERN was founded in 1954 and is now the largest particle physics center in the world
[16]. Located on the border between France and Switzerland near Geneva, it is the
location of LEP (Large Electron-Positron collider). CERN has been an important site for
particle physics, and is also the birthplace of the World Wide Web.

The LHC (Large Hadron Collider) is a new collider being built at CERN in the LEP
tunnel. It will produce counter-rotating proton beams at 7 TeV inside its 16-mile-long
tunnel (the largest of any accelerator).

Figure 5: LHC and experiments map [5]

Bunches of about a billion protons are spaced 7.5m (25ns) apart and produce up to
around 20 proton-proton collisions when they meet head-on at one of the collision points.

 10

The LHC is currently under construction and is scheduled for final commissioning in
2007. [31]

LHC Specifications: [30]
Accelerates protons and fully-ionized lead ions

26,659 m circumference with an 11.2455 kHz frequency of revolution

Protons injected by SPS (Super Proton Synchrotron) at 450 GeV and accelerated to 7
TeV

Approximately 9300 magnets with up to an 8.33 T magnetic field

Approximately 120 MW of power consumed during operation

 11

Description of ATLAS and the Muon Subsystem

ATLAS
ATLAS = A Toroidal LHC ApparatuS

ATLAS is a five-story-tall particle detector being built by a collaboration of 1800
physicists in 34 countries. It is the largest collaborative effort ever in physical sciences.
[4]

Figure 6: The ATLAS detector [1]

ATLAS has four detector systems, each of which contains various specific types of
detectors designed to give different information on the particles produced. Taken
together, they provide a complete picture of the collision.

 12

Figure 7: ATLAS detector systems [6]

Figure 8: Breakdown of ATLAS systems [7]

 13

Muon System

Figure 9: Muon system [3]

The muon system can be grouped into two categories:

• Muon precision chambers (MDT and CSC)
• Muon trigger chambers (RPC and TGC)

The precision chambers produce the critical measurements in the bending direction
needed to obtain muon momentum. The trigger chambers provide prompt information for
deciding whether to keep an event as well as producing measurements in the non-bending
direction for MDT (which has no such capability).

The Muon CSC chambers represent only half a percent of the total area for precision
chambers but account for over 15% of the channels. This is necessary because the CSC
chambers are located in the highest rate area of the muon system.

 Precision chambers Trigger chambers
 CSC MDT RPC TGC
Number of chambers 32 1194 596 192
Number of channels 67,000 370,000 355,000 440,000
Area (square inches) 27 5500 3650 2900

Table 1: Muon chamber numerics [3]

 14

Muon CSC
The muon cathode strip chambers (CSCs) start as two layers of cathode strips with anode
wires in between. The precision layer has 192 channels and measures in the direction of
magnetic curvature, while the transverse layer has only 48 channels for measurement in
the less critical non-bending direction.

 Figure 10: Diagram of CSC planes [3]

 Figure 11: Photo of assembled CSC [42]

Four of these layer pairs are combined to form a single chamber. Each chamber therefore
has four precision layers of 192 channels each and four transverse layers with a total of
192 channels (48 each). Five ASM-II boards (four precision, one transverse) are attached
to the chamber. Each of these boards buffers, digitizes, and serializes the 192 strip
voltages onto a pair of gigabit fiber optic cables. The fiber optic cables carry the data out
of the radiation area to be processed by the RODs.

Chamber data read out for a single beam crossing is called a time slice. Each event
contains four such time slices taken at 50ns intervals (two beam crossings), which means
events can overlap.

 15

Trigger/DAQ Chain and the Role of the ROD
What starts as 40 million events per second from each detector must be reduced the point
where it can be permanently stored for offline analysis. The first of these reductions is
performed by the Level 1 Trigger, which has access to prompt information on jets and
clusters in the calorimeters and muon trigger detectors. This information is compared
against a "menu" which lists at what rates different types of events are to be kept. The
total of all events kept must be less than the maximum design value of 75 kHz (to be
upgraded to 100 kHz at a later date), and there are rules that place additional constraints
on triggers (such as 8 triggers max in 80 μs). All data from all events must be buffered
until the Leve1 1 Trigger has made its decision.

Figure 12: Trigger chain and data flow in ATLAS [2]

After the Level 1 Trigger passes an event, it is read out by the Readout drivers (RODs).
These are custom boards designed for each detector that communicate with the detector
to generate a digital fragment for each event. This event data is sent to large Readout
buffers (ROBs) that hold the data for the Level 2 Trigger. This trigger has access to all
the data but is also given Regions of Interest (ROIs) from the Level 1 Trigger to help
narrow the search. After passing the Level 2 Trigger, the event data is gathered from all
detectors and sent to PCs for a final decision before being written to permanent storage.

 16

The ATLAS CSC ROD and GPUs
The CSC ROD is a fairly generic 9U VME board that can accept high-rate input and
perform processing on the data in parallel with up to 12 DSPs. The output then goes
through a programmable Data Exchange for final event building and output. A custom
back-of-crate card allows changing of the input and output media types without altering
the ROD board.

Figure 13: CSC ROD interconnection diagram [33]

Figure 14: Photo of partially-complete CSC ROD [42]

 17

GPU, HPU, DPU, SPU, RPU
The DSPs on the CSC ROD are on daughterboards called GPU (Generic Processing Unit)
modules. The twelve GPUs dedicated to data processing are called DPUs (Data
Processing Units), while a thirteenth that oversees the entire ROD board is called the
HPU (Host Processing Unit). In the CSC ROD, one DPU will be assigned to each ASM-
II board on two chambers for a total of ten SPUs (Sparsifier Processing Units). The
remaining two RPUs (ROD Processing Units) will each receive an entire chamber's
worth of sparsified data for final neutron rejection and output.

Table 2: Table of GPU types [33]

 Figure 15: Photo of GPU daughterboard [42]

Each DPU Module can communicate with the Interconnect via the Expansion Bus FPGA
(XFPGA) and with the Data Exchange via the EMIF FPGA (EFPGA). The HPU can
perform random access on the DPUs' 512kB internal memory via DPU Control and the
DPUs have an additional 8MB of external SDRAM.

Figure 16: GPU block diagram [33]

GPU Generic Processing Unit x13
 HPU Host Processing Unit x1
 DPU Data Processing Unit x12
 SPU Sparsifier Processing Unit x10
 RPU ROD Processing Unit x2

 18

Design

SPU vs. RPU
Two gigabit fiber optic cable's worth of data is the limit that one DPU can handle from
the XFPGA. Therefore, five DPUs called SPUs are the first to receive data from the five
ASMs. Their job is to make a significant reduction in the data by eliminating channels
without a hit or with a hit that is from a different beam crossing. This is called
sparsification, and it consists of a threshold cut and two time cuts (one coarse, one fine).
The SPUs are also responsible for formatting the data, identifying clusters, and
generating summary information about them.

The SPUs do not have data from the entire chamber, so there is no way to perform
neutron rejection at this level. Therefore, the output from the five SPUs is directed to
another DPU called the RPU. The RPU looks at the summarizing information about the
clusters and keeps only those clusters that have a corresponding hit in at least one other
layer. There is also some final data formatting before output.

The output of two RPUs is combined by the Data Exchange into the ATLAS standard
format and sent to the ROB. One ROD therefore handles two chambers.

The SPUs and RPUs have no direct communications with each other. The data is
transferred through the Data Exchange via their corresponding EFPGAs.

More information on the SPU and RPU is available in the SPU and RPU sections below.

 19

Events and data flow in the ROD

Events
The input to the SPU is timeslices. Each timeslice contains 96 words of ADC samples
and an 8-word trailer. The exact number of timeslices per Event can vary during testing
and calibration, but it will be 4 during normal running. However, because some
timeslices are shared between Events, the number of timeslices that are removed from
input during processing can vary.

The output of the SPU and input to the RPU is called the Sparsified Data Format. This
format is variable length but is more easily handled if it is padded to a multiple of some
power of two (16 in the current software). Each SPU will output one of these variable-
length units per Event, but the RPU will read in five of them per Event (one from each
SPU). The final output of the RPU will also be variable-length, but will not be padded
because the ATLAS format does not use any special alignment.

To allow for a single DPU framework, we need a generalized Event format that is
flexible enough to support all these modes but restricted enough to allow efficient, simple
code to be used.

An Event is a fixed number of Packets. This number, EEvveennttLLeennggtthh, is selectable when
setting up for a run. The Packets can be fixed or variable length, with at most
MMaaxxPPaacckkeettLLeennggtthh Frames per Packet. If the Event is fixed-length, then each Packet will
contain exactly one Frame of FFrraammeeSSiizzee words. If the Event is variable-length, then the
first word of the first Frame will be a size word that says how many words are in the
Packet (including the size word but excluding padding in the last Frame).

This format is generic enough to handle all the cases needed by the SPU and RPU as well
as many unforeseen formats that have come up during testing. The format is completely
independent of the data being transferred, which maintains a clear separation between the
buffer management code and the Decoder-specific code that processes the data.

 EventLength MaxPacketLength FrameSize
SPU Input 4 (typically) 1 (fixed-length) 96+8

SPU Output 1 38 (typically) 16
RPU Input 5 38 (typically) 16

RPU Output* 1 26 (typically) 16
Table 3: Parameters used for various input and output modes (see text for description)

* The RPU will not send the size word or padding in its output.

 20

EVENT

PACKET
0

PACKET
1

PACKET
2

PACKET
EventLength - 1

PACKET
(MaxPacketLength = 1)

Total size is FrameSize words

PACKET
(MaxPacketLength > 1)

Total size is N * FrameSize words

FRAME
0

FRAME
1

FRAME
N - 1

(N <= MaxPacketLength)

FRAME
0

Variable-Length

Fixed-Length

Figure 17: Generic Event format

Queues
Events come into the DPU Input Buffer (DIB) and leave through the DPU Output Buffer
(DOB). Both buffers use the same Event format, allowing for a variety of configurations
of input and output. The classes for the DIB and DOB also support different sources and
destinations such as external memory buffers and different FPGAs.

 21

Data flow
The overall flow of data starts at the front end where the chambers are directed to output
their ADC samples by the SCA controller on the ROD. These ADC samples are
reordered as needed and are sent to the SPUs along with a trailer containing trigger
information. The SPUs perform their sparsification and send the result to the RPUs via
the Data Exchange. The RPUs then perform their processing and send the result out to the
Read Out Link and eventually to the ROB.

The readout is initiated by a trigger that is received by the TTC FPGA. The HPU
orchestrates everything and is responsible for keeping data flowing through the ROD.

ROL

Data Exchange
(DX)

Data Processing Units
(DPUs)

Backplane Interface Area
(BPIA)

Transition Module
(TM)

Front End
(FE)

ASM

ASM

ASM

ASM

ASM

SPU

SPU

SPU

SPU

SPU

RPU

FPGA for Triggers and SCA Controller
(TTC FPGA)

Host Processing Unit
(HPU)

Triggers from ATLAS
(TIM)

ROD

Sends triggers
to the TTC FPGA

Sends samples and
error information

to the BPIA

Gets trigger info
from the TTC FPGA

Gets raw samples
from the FE

Gets samples and
error information

from the TM

Sends SCA control
to the FE

Gets SCA control
from the TTC FPGA

Directs sparsified data
between the DPUs

Gets control
and leaders/trailers

from the HPU

Sends output events
to the ROL

Gets chamber data
from the RPUs

x2 x2

Sends time slices
to the SPUs

Gets triggers from the TIM

Sends triggers to the HPU and the BPIA

Sends SCA control to the TM

Gets triggers from the TTC FPGA

Sends control to the DPUs

Sends control and leaders/trailers to the DX

Gets control
from the HPU

Figure 18: Data flow in the ROD

 22

Requirements
There are several requirements of the software.

• Real-time performance
Specifically, there is a hard requirement that the average performance stay under
3000 DSP clock cycles per Event processed (necessary for 100kHz trigger rate)
and that the maximum time to perform any task stay under 10,000 DSP clock
cycles (necessary to prevent input buffer overflow).

• Error-free operation

It is not acceptable for the DPUs to output erroneous data under any
circumstances. Any alternative, including discarding or generating a Fault
condition, is preferable.

• Continuous running

While no system can make a 100% guarantee of perfect operation, the DPUs must
have minimal failures to maximize data taking. The CSC ROD is one part among
many in ATLAS, and the downtime of the entire detector is a combination of the
downtimes of the individual parts.

• Online monitoring

Some way must exist to allow the HPU and outside world to monitor the status of
the DPUs and make run time changes. In particular, some method for accessing
the output of histograms or performing Event capture is needed. There should also
be a way to access run performance indicators and halt a run if an error is
detected.

• Handle unusual Events without choking

Naturally the system cannot handle any arbitrary input that might exceed the
specifications (such as a million Events in a row with every channel hit).
However, the system should be able to accept such anomalous Events on an
occasional basis. It should also be able to handle any single Event that is
theoretically possible without encountering an untested boundary case that causes
a crash.

More concisely:

1. "The DPU software shall operate in such a manner as to allow processing of
triggers at the 100kHz rate with no discarding expected under normal operation."

2. "The DPU software shall attempt to deal with all situations without data loss

except those identified as unavoidable faults."

3. "The DPU software shall respond to control initiated by the HPU, and shall relay
DPU status information to the HPU on a regular basis."

 23

The HPU-DPU relationship
In order to meet requirement 3 above, it is necessary to have good communications
between the HPU and DPUs. Because the HPU has a total of 12 DPUs to communicate
with, it's essential that this communication not be CPU-intensive for the HPU.

DPU Control provides the mechanism for communication. With it, the HPU is able to
perform arbitrary accesses into DPU memory via the XFPGA. This lends itself
immediately to the use of shared memory for communication. The first level of
communication, called the Status struct, does just this. The Status struct is used to
initialize the DPU, relay status information to the HPU, and accept high-priority Orders
from the HPU (used only to override the normal operation of the DPU during testing or in
the event of an error). The Status struct also contains pointers so that the HPU can locate
the other buffers used for communication.

A shared memory struct is acceptable for asynchronous communication, but it is not an
effective way to serialize commands. This serialization is important to ensure that
requests for histogramming or Event capture are received before the corresponding Event
has been processed and removed. To accommodate this, the main Command stream is
received by the Command Input Buffer (CIB). The CIB is a circular buffer that receives
Commands to process an Event or perform any other task in the system. The CIB uses the
same class as the DIB, and Commands conform to the generic Event format.

Because the output of both the SPU and RPU is facilitated by the Data Exchange, and the
Data Exchange is driven by a command stream from the HPU, it is necessary that the
HPU know when Events are ready for output and how big they are. This information, as
well as the response to any other Command, is returned through a circular buffer called
the Response Buffer. This allows the HPU to read the details of several Events at once
rather than be forced to handshake each Response one by one.

 24

The DPU software framework
The DPU software framework has 6 main systems:

• Management System
• Data System
• Command System
• Scheduling System
• Hardware Abstraction Layer (HAL)
• Drivers

Co

m
m

an
d

Co
nt

ro
l D
at

a
Co

nt
ro

l

Sc
he

du
lin

g
Co

nt
ro

l

Lo
w

-L
ev

el

H
ig

h-
Le

ve
l

D
riv

er
 a

cc
es

s

H
AL

 C
on

tr
ol

 a
nd

 a
cc

es
s

H
ig

h-
Le

ve
l

H
ig

h-
Le

ve
l

Data System
Uses plug-in Decoders to

process events

Command System
Uses plug-in Functions to

service host requests

Scheduling System
Schedules plug-in Tasks for

repeated use

Management System
Controls execution based on priorites

Initializes, Updates, and Terminates all systems
Has direct Driver/HAL access as needed for bootstrapping communications

Drivers
Provide a thin wrapper to the hardware

Hardware Abstraction Layer (HAL)
Provides a simple interface to hardware-related buffers and structures

Figure 19: High-level block diagram of DPU software framework

 25

Management System
The Management System looks at the current state of the DPU and decides what should
be done next. It is also responsible for IInniittiiaalliizzee(()), TTeerrmmiinnaattee(()), and the regular UUppddaattee(())
that occurs between all other activities.

 Main Loop
 (10,000 DSP clock cycles max)

Initialize

Who do we
service?

Idle

Terminate

Service
Command System

Boot

Service
Data System

Service
Scheduling System

"End Run" Order?

Command

 Data

Scheduling

Yes

Update

No

Figure 20: Management System flowchart

 26

Data System
The Data System is responsible for the actual processing of Events. Compile-time
plug-ins called Decoders are used to perform this processing.

Each Decoder provides a common interface for IInniittiiaalliizzee(()) and TTeerrmmiinnaattee(()) as well as a
CCaannIInniittiiaalliizzee(()) function that tells the Data System whether the Decoder is usable in the
current mode of operation. The function EExxeeccuuttee(()) handles the processing of one Event.

If for some reason the DIB is filling beyond our ability to drain it, each operational mode
also selects a Discard Decoder. This is a special plug-in that is invoked to quickly remove
Events without full processing. A special output is generated to let the next stage of
processing know that a discard was performed. Discarding is not expected to be needed
in normal operation, but it is preferable to a Fault or crash during commissioning.
Discarding is automatic and takes priority over the Command stream.

Command System
The Command System handles the incoming Command stream and reports to the
Management System what the next Command will be. Generally these are Decode
Commands which instruct the DPU to process another Event, but there are also Function
Commands that invoke a compile-time plug-in called a Function. These can be used to do
anything, including starting, stopping, or requesting output from a Task in the Scheduling
System.

Orders are also considered part of the Command System. These are the highest-priority
signals the HPU can send and will be executed before all other actions. Sending an Order
to a DPU violates normal operation rules and is only used during testing or to end a run.

Scheduling System
The Scheduling System takes care of executing compile-time plug-ins called Tasks.
These are started by the HPU and are automatically executed at pre-determined times.
They can be set to activate at a given wall clock time or on a given Event number.

Task execution must still compete against Event processing and other Command
servicing for time in the Management System, but the Scheduling System decides which
Task will be done during the next opportunity. Tasks can request either capture or
servicing: capture is scheduled for a specific time or Event number, while service can
occur at any time up to a maximum time or Event number. The idea is for Tasks to do
only quick operations during their time-critical capture and defer any longer calculations
for a service slot that is easier to schedule.

In the event that the Scheduling System falls behind, the entire list of Tasks must be
cleared and restarted. The Scheduling System is of lower priority than Event processing
and is the first to be sacrificed if things are running behind.

 27

Priorities
The decision of the Management System is based on a color-coded priority assigned to
each of the three high-level Systems beneath it. The basic meaning of each priority level
is consistent between these Systems.

prRed
Too late to service without loss

Data requires immediate discarding
Scheduling can remain Red indefinitely

prYellow
Needs servicing to avoid loss

Data should remain below Red if serviced immediately

prGreen
Normal priority when awaiting servicing

prEmpty
No work to be performed

Figure 21: Color-coded Priority levels

 28

Orders are given the top priority and are serviced by special Functions. The following
table summarizes who is serviced or invoked for all other situations:

 Scheduling
nothing to do service later capture or service now (abort)

Data Next Command prEmpty prGreen prYellow prRed
prEmpty None Wait Scheduling Scheduling Scheduling
prEmpty Decoder Wait Scheduling Scheduling Scheduling
prEmpty Function Function Scheduling Scheduling Scheduling
prGreen None Wait Scheduling Scheduling Scheduling
prGreen Decoder Decoder Scheduling Scheduling Scheduling
prGreen Function Function Scheduling Scheduling Scheduling
prYellow None Wait Wait Wait Wait
prYellow Decoder Decoder Decoder Decoder Decoder
prYellow Function Function Function Function Function
prRed None Discard Discard Discard Discard
prRed Decoder Discard Discard Discard Discard
prRed Function Discard Discard Discard Discard

Table 4: Management System Priority decision table

Normal rates will not increase Data System Priority if Decoders are constantly serviced.
This follows from basic performance requirements. The HPU is responsible for not
sending too many Function Commands in between Decode Commands. How this is done
depends on the exact performance of the Decoder and the Function Commands being
used, but it will generally be specified as a limit on the minimum number of Decode
Commands between Function Commands.

The HPU must also ensure that Decode Commands arrive before the Data System goes
Yellow. This places a limit on the latency of the HPU in trigger processing.

 29

Hardware Abstraction Layer (HAL)
The HAL provides high-level interfaces to low-level functionality.

• HAL Control
HAL Control is the interface used by the Management System to Initialize,
Update, and Terminate the HAL. The HAL is responsible for the underlying
drivers.

• Status Structure

The Status struct provides general communications with the HPU using shared
memory. The struct is publicly available to the entire framework.

• Command Input Buffer (CIB)

The CIB receives serial Commands from the HPU. All major actions (besides
discarding and Orders) taken by the DPU are in response to a Command.

• Response Buffer

The Response Buffer holds outgoing serial Responses to Commands. The
Response to a Decode Command (a command to initiate processing an Event) is
size information for the resulting Event to be output.

• DPU Input Buffer (DIB):

The DIB provides a simple interface to Decoders (routines responsible for
processing an Event) to access an input Event. All buffer management for input is
handled by the DIB.

• DPU Output Buffer (DOB):

The DOB provides a simple interface to Decoders (routines responsible for
processing an Event) to generate an output Event. All buffer management for
output is handled by the DOB.

• Policy Subsystem

The Policy Subsystem maintains a simple database of Event information
(EEvveennttLLeennggtthh, MMaaxxPPaacckkeettLLeennggtthh, FFrraammeeSSiizzee, etc) for different data types. These
values can be loaded at run time by the HPU or can be overridden to create a new
operational mode.

• Parameter Subsystem

The Parameter Subsystem allows the HPU to pre-load values to be used as the
parameters for Commands. The use of these Parameter sets is transparent on the
DPU side and reduces the time needed to transfer commonly used sets.

 30

Hardware Abstraction Layer (HAL)
HAL directory

HAL Control
Provides Control interface to

Management System

Command Input Buffer (CIB)
Receives Commands from host to

execute a Function or Decoder

DPU Input Buffer (DIB)
Receives incoming Events to be

processed

Lo
w

-L
ev

el

Drivers

Status Structure
Makes important DPU internal state

information available to the host

Response Buffer
Stores outgoing Event sizes and Replies

to host Commands when needed

DPU Output Buffer (DOB)
Stores outgoing Events after processing

H
ig

h-
Le

ve
l

H
ig

h-
Le

ve
l

H
ig

h-
Le

ve
l

Data SystemCommand System Scheduling
System

Policy Subsystem
Stores constants that are changed for

different operational modes

Parameter Subsystem
Stores sets of parameters for reuse in

host commands

Figure 22: HAL System diagram

Drivers
The Drivers provide a thin wrapper to four major types of hardware:

• DMA
• FPGAs
• Timers
• Memory

Drivers are primarily used by the HAL to implement its functionality.

 31

Policies and design rules for the software
To meet the requirements of the DPU software, there are a number of rules that must be
followed.

1. Expensive operations (such as non-power-of-two divides and dynamic memory
allocation) can never be used during a run.

2. Anything that can be done before or after a run should be.

3. The most critical part of the program is the part that is executed for every action

(i.e. UUppddaattee(()) and part of the Management System). This is called the Main Line,
and everything should be kept off the Main Line if possible.

4. Maximum time matters as much as, if not more than, average time. You cannot

have open-ended loops that execute an unknown number of times during a run,
and you should not execute anything more than once per pass on the Main Line.

5. Many memory accesses are vvoollaattiillee by nature, but the vvoollaattiillee keyword carries

double meaning in C++. It implies that the access itself cannot be optimized
away, and it prevents the optimizer from reordering across that line. This can
prevent proper pipelined loops when copying to/from vvoollaattiillee memory regions.
Such loops must use the separately-compiled functions such as FFaassttCCooppyy<<>>(())
and FFaassttCCooppyySSttrriiddee<<>>(()) to get full optimization.

6. In spite of the need for optimization, working code is more important than fast

code. All code should be as portable and standards-conforming as possible, and
should follow the rules of proper encapsulation and data hiding.

 32

SPU

Sparsification algorithm
The SPUs receive 192 channels of data with four 12-bit ADC samples per channel. At a
trigger rate of 100 kHz this means 166 MB/s of data. Each RPU would therefore receive
over 800 MB/s, which is a phenomenal amount of data. While the CSC are high-rate
chambers, the occupancy is quite low; this means that only a few channels contain
meaningful information and the rest are noise and leftovers from other beam crossings.

When a particle passes through the chamber and generates a signal, a cluster is formed.
This cluster is a group of neighboring channels that show a response to the particle. Each
channel in the cluster is a hit, and ideally we only want to keep the hits from the clusters
that occurred in a chosen time window for the trigger. A threshold cut is used to eliminate
channels that are not hit, and a time cut is used to eliminate clusters that are out-of-time.
For efficiency reasons the first time cut is made on channels that are outside a rough
75 ns window, followed by a finer cut on clusters to a programmable window size.

The preamp shapers in the CSC readout electronics produce a 7th order complex bipolar
Gaussian [19]. This looks roughly like a parabola on a leading positive lobe followed by
a smaller negative lobe with a longer tail. The four ADC samples are spaced 50 ns apart,
giving a 200 ns range that covers the positive lobe. Because the triggers come on a 25 ns
beam crossing clock, there are two different trigger/sampling phases. To simply things,
the sampling is adjusted so that the nominal peaking time for in-time hits falls halfway
between the B (second) sample of the later sampling and the C (third) sample of the
earlier sampling. The case where the B sample is nearer the nominal peaking time is
called phase B, and the case where C is nearer is called phase C.

Thanks to this symmetric sampling, there is a simple algorithm for applying a threshold
and rough 75 ns time cut on channels. The requirement is that the nominally largest
sample (B for phase B, C for phase C) be larger than a threshold, sample A, and sample
D. This test is not sensitive to the exact shape of the positive lobe, and is accurate in the
approximation that the positive lobe is symmetric about the peak.

Pulse at center of acceptance window

Acceptance window

75ns

Figure 23: In-time pulse (lines every 25 ns, squares are phase B samples, circles are phase C)

 33

Pulses near edges of acceptance window

Acceptance window

75ns

Figure 24: In-time pulses (lines every 25 ns, squares are phase B samples, circles are phase C)

Pulses outside of acceptance window

Acceptance window

75ns

Figure 25: Out-of-time pulses (lines every 25 ns, squares are phase B samples, circles are phase C)

Average flux with standard safety factor of 5 (muon) [3]: 1500 Hz/cm2

Average flux with standard safety factor of 5 (background) [24]: 1500 Hz/cm2
Average flux (muon + background): 3000 Hz/cm2

Precision strip area [3]: 25 cm2

Transverse strip area [3]: 100 cm2

Precision cluster probability per beam crossing (25ns): 0.19%
Transverse cluster probability per beam crossing (25 ns): 0.75%

Precision cluster probability in a 75 ns rough time cut: 0.56%
Transverse cluster probability in a 75 ns rough time cut: 2.25%

Typical precision cluster width (number of channels above threshold): 5
Typical transverse cluster width (number of channels above threshold): 2

Precision channel probability in a 75ns rough time cut: 2.8%
Transverse channel probability in a 75ns rough time cut: 4.5%

Average number of precision clusters per SPU after threshold/75ns cut: 1.1
Average number of transverse clusters per SPU after threshold/75ns cut: 4.3
Average number of precision channels per SPU after threshold/75ns cut: 5.4

Average number of transverse channels per SPU after threshold/75ns cut: 8.7
Table 5: CSC rate numerology

 34

After this first cut there are only a few clusters per layer. The next step is to identify the
clusters by finding groups of contiguous hit channels. This may cause us to see two
overlapping clusters as a single cluster, but this can be dealt with offline. Before we make
this cluster identification, it is important to consider the effect of bad channels. A channel
that is dead may split a cluster into two clusters, and a channel that is hot or noisy could
produce spurious clusters. To address this, we adopt a policy that bad channels cannot be
the seed for a cluster, but should be treated as a hit if they are next to a channel that is hit.
This will bridge the gap in a broken cluster without producing extra clusters that cannot
be relied upon.

This is also the time to mark additional neighbors to be kept. The software offers the
option of marking one or more channels next to each cluster to be treated as though they
were hit. This option allows for more detailed charge centroid calculations for finding the
position by including the below-threshold neighbors. Recent studies [43] suggest using
one precision neighbor as the threshold can be set quite low, but more can also be used.

Once bad channels are dealt with and neighbors marked, we can find the clusters and
compute a more precise time estimate for the next cut. To get a time estimate, we can
treat the positive lobe as a parabola and perform inverse parabolic interpolation using
samples A/B/C or samples B/C/D.

• Formulae giving peaking times relative to time of center sample: [34]

() () ()

() () ()
DBC

DBnscnst

CAB
CAnsbnst

−−
−

−=

−−
−

−=

2
25

2
25

While these appear to be very different formulae, shifting to a common time reference
gives the same numerator with different denominators. As it turns out, in the ideal case of
a perfect parabola we expect the discriminants (denominators) to be equal. We will use
the larger denominator of the two: this increases the chance of getting a denominator that
is suitably positive to give a useful result and errs on the side of keeping the cluster
(smaller time).

In additional to a very small, zero, or negative denominator, there are other reasons why a
given channel may not be suitable for time estimation. Channels that were below
threshold (neighbors) and channels that are marked as bad should never be used for time
estimation. Also, any sample that is high or low saturated should not be used. This can
mean actual saturation or merely outside the region of linearity. Normally a linear
calibration correction should be applied but it will not affect the time we obtain.

 35

For a given cluster, the best time to use is the time of the largest eligible channel in that
cluster. Practically speaking, that means the channel with the largest sample B (for phase
B) or sample C (for phase C) that can have a time computed. The choice of which
channel has the highest sample is affected by a linear calibration correction, so this must
be applied to that sample before comparison. This produces the best time for a cluster,
but what if the cluster is really two or more overlapping cluster? If an out-of-time cluster
were to overlap with a smaller in-time cluster, the out-of-time cluster would have the
largest sample and cause the entire cluster pair to be rejected. To avoid this, we also
compute the time for each of the sides of the cluster and compare these to the time
obtained from the largest channel. If all three times do not fall into a programmable
range, the cluster time is left blank and the cluster is considered to pass. Offline software
can work further to compute an accurate time.

Once a time is computed, we apply a final time cut on clusters to around 40-50 ns, which
is enough to get all in-time muons [36]. This gives a 25-35 ns leeway between the final
window and the original 75 ns window, making the output insensitive to even a
substantial error in the 75 ns cut. The times produced by inverse parabolic interpolation
are accurate to about 1 ns [20].

After the last time cut, the SPU must produce a set of cluster bitmaps. These are six
words that show which channels are included in the cluster. These, together with a total
bitmap for the entire SPU, are used by the RPU for neutron rejection. The bitmaps are
compressed by suppressing zero words and sent along with the cluster-based output via
the Data Exchange.

Summary of processing

• Sparsification (threshold and 75ns cut)

• Neighbor marking and bad channel masking

• Cluster identification

• Cluster time estimation and time cut

• Bitmap creation

• Output formatting

 36

Sparsified data format

Events

Data

SPU status header

Common Header

Normal Event Error Event Discard Event

Common header

E

31E

30E

29E

28 E

27E

26E

25E

24 E

23E

22E

21E

20 E

19E

18E

17E

16 E

15E

14E

13E

12 E

11E

10E

9 E

8 E

7 E

6 E

5 E

4 E

3 E

2 E

1 E

0

0 0 0 0 M

3 M

2 M

1 M

0 0 0 0 0 T

3 T

2 T

1 T

0 S

15S

14S

13S

12 S

11S

10S

9 S

8 S

7 S

6 S

5 S

4 S

3 S

2 S

1 S

0

• M = Module ID
• T = Type of Event (0 = Normal, 1 = Discard, 2 = Error)
• S = Size of Event (in words, including the common header and ghost words)
• E = Event index

SPU status header

Status words (timeslice D)

Status words (timeslice C)

Status words (timeslice B)

Status words (timeslice A)

Status words

S

31S

30S

29S

28 S

27S

26S

25S

24 S

23S

22S

21S

20 S

19S

18S

17S

16 S

15S

14S

13S

12 S

11S

10S

9 S

8 S

7 S

6 S

5 S

4 S

3 S

2 S

1 S

0

S

31S

30S

29S

28 S

27S

26S

25S

24 S

23S

22S

21S

20 S

19S

18S

17S

16 S

15S

14S

13S

12 S

11S

10S

9 S

8 S

7 S

6 S

5 S

4 S

3 S

2 S

1 S

0

S

31S

30S

29S

28 S

27S

26S

25S

24 S

23S

22S

21S

20 S

19S

18S

17S

16 S

15S

14S

13S

12 S

11S

10S

9 S

8 S

7 S

6 S

5 S

4 S

3 S

2 S

1 S

0

S

31S

30S

29S

28 S

27S

26S

25S

24 S

23S

22S

21S

20 S

19S

18S

17S

16 S

15S

14S

13S

12 S

11S

10S

9 S

8 S

7 S

6 S

5 S

4 S

3 S

2 S

1 S

0

S

31S

30S

29S

28 S

27S

26S

25S

24 S

23S

22S

21S

20 S

19S

18S

17S

16 S

15S

14S

13S

12 S

11S

10S

9 S

8 S

7 S

6 S

5 S

4 S

3 S

2 S

1 S

0

S

31S

30S

29S

28 S

27S

26S

25S

24 S

23S

22S

21S

20 S

19S

18S

17S

16 S

15S

14S

13S

12 S

11S

10S

9 S

8 S

7 S

6 S

5 S

4 S

3 S

2 S

1 S

0

• S = Status words from BPI

 37

Data

Cluster 2

Cluster 1

Cluster 0

B

31B

30B

29B

28 B

27B

26B

25B

24 B

23B

22B

21B

20 B

19B

18B

17B

16 B

15B

14B

13B

12 B

11B

10B

9 B

8 B

7 B

6 B

5 B

4 B

3 B

2 B

1 B

0

B

31B

30B

29B

28 B

27B

26B

25B

24 B

23B

22B

21B

20 B

19B

18B

17B

16 B

15B

14B

13B

12 B

11B

10B

9 B

8 B

7 B

6 B

5 B

4 B

3 B

2 B

1 B

0

B

31B

30B

29B

28 B

27B

26B

25B

24 B

23B

22B

21B

20 B

19B

18B

17B

16 B

15B

14B

13B

12 B

11B

10B

9 B

8 B

7 B

6 B

5 B

4 B

3 B

2 B

1 B

0

B

31B

30B

29B

28 B

27B

26B

25B

24 B

23B

22B

21B

20 B

19B

18B

17B

16 B

15B

14B

13B

12 B

11B

10B

9 B

8 B

7 B

6 B

5 B

4 B

3 B

2 B

1 B

0

B

31B

30B

29B

28 B

27B

26B

25B

24 B

23B

22B

21B

20 B

19B

18B

17B

16 B

15B

14B

13B

12 B

11B

10B

9 B

8 B

7 B

6 B

5 B

4 B

3 B

2 B

1 B

0

B

31B

30B

29B

28 B

27B

26B

25B

24 B

23B

22B

21B

20 B

19B

18B

17B

16 B

15B

14B

13B

12 B

11B

10B

9 B

8 B

7 B

6 B

5 B

4 B

3 B

2 B

1 B

0

C

15C

14C

13C

12 C

11C

10C

9 C

8 C

7 C

6 C

5 C

4 C

3 C

2 C

1 C

0 D

15D

14D

13D

12 D

11D

10D

9 D

8 D

7 D

6 D

5 D

4 D

3 D

2 D

1 D

0

...
• C = Cluster count
• D = Number of data words that follow in clusters
• B = Bitmap of all clusters

Cluster

Sample words

Bitmap words

Cluster words

Cluster words

0 0 0 0 0 0 0 0 0 0 0 0 0 B

2 B

1 B

0 0 0 0 F T

11T

10T

9 T

8 T

7 T

6 T

5 T

4 T

3 T

2 T

1 T

0

0 A

3 A

2 A

1 A

0 L

1 L

0 D C

7 C

6 C

5 C

4 C

3 C

2 C

1 C

0 W

15W

14W

13W

12 W

11W

10W

9 W

8 W

7 W

6 W

5 W

4 W

3 W

2 W

1 W

0

• A = Adjustment for channel number
• L/D/C = Layer/Direction/Channel number (D = 0 for precision, 1 for transverse)
• W = Width of cluster (number of sample word pairs)
• B = Bitmap present (each bit activates the corresponding pair of bitmap words)
• F = Failed to compute time (time will be 0)
• T = Time (signed, in nanoseconds)

 38

Bitmap words

B

31B

30B

29B

28 B

27B

26B

25B

24 B

23B

22B

21B

20 B

19B

18B

17B

16 B

15B

14B

13B

12 B

11B

10B

9 B

8 B

7 B

6 B

5 B

4 B

3 B

2 B

1 B

0

B

31B

30B

29B

28 B

27B

26B

25B

24 B

23B

22B

21B

20 B

19B

18B

17B

16 B

15B

14B

13B

12 B

11B

10B

9 B

8 B

7 B

6 B

5 B

4 B

3 B

2 B

1 B

0

• B = Bitmap for this cluster

Sample words

C

15C

14C

13C

12 C

11C

10C

9 C

8 C

7 C

6 C

5 C

4 C

3 C

2 C

1 C

0 D

15D

14D

13D

12 D

11D

10D

9 D

8 D

7 D

6 D

5 D

4 D

3 D

2 D

1 D

0

A

15A

14A

13A

12 A

11A

10A

9 A

8 A

7 A

6 A

5 A

4 A

3 A

2 A

1 A

0 B

15B

14B

13B

12 B

11B

10B

9 B

8 B

7 B

6 B

5 B

4 B

3 B

2 B

1 B

0

• A = sample A
• B = sample B
• C = sample C
• D = sample D

Ghost words
At the end of Events can be added one or more ghost words. The presence of these words
can be inferred by comparing the reported total size with the actual size of any data words
and known headers. These words are not used in normal running and should be ignored
by ATLAS software. The primary use of these words is to aid debugging during
commissioning.

There are no current ghost words, since the status words are already sent.

 39

Implementation
The key to efficient performance in the SPU Decoder is the use of parallel assembly for
time-critical inner loops. There are 9 assembly language routines used in processing on
the SPU:

OOOOTTEElliimmiinnaattee assembly function
1. Reads three time slices from the input buffer and the thresholds for each channel.
2. Applies threshold test and 75ns OOT elimination to all channels.
3. Stores a bitmap indicating which channels passed.

Performance: 241 DSP clocks (disables interrupts)

 LDW .D1 *taddr1++, thresh1

 LDW .D1 *baddr1++, big1

 LDW .D1 *laddr1++, left1

 LDW .D1 *raddr1++, right1

 NOP

 NOP

 SUB2 .S1 thresh1, big1, thresh1

 SUB2 .S1 left1, big1, left1

 SUB2 .S1 right1, big1, right1
|| AND .L1 thresh1, left1, left1

 AND .L1 left1, right1, right1

 MPY .M1X right1, shift2, low1

 MPYHL .M1X right1, shift2, high1

 SMPYH .M1X low1, shift2, mask1

 MPYH .M1X high1, shift2, high1

 NOP

 OR .L1 mask1, high1, temp1

 NOP

 SHL .S1 temp1, 2*(COUNT2%16), temp1

 OR .L1 BITMAP1, temp1, BITMAP1

Figure 26: Side 1 loop kernel for OOOOTTEElliimmiinnaattee(())

 40

This function, like most, relies on a heavily pipelined loop with multiple operations
occurring in parallel. This particular loop is a good example of pipelining, as it requires
just under five blocks of four DSP clock cycles each in order to be paralleled with itself
every four clock cycles. This means that we have a four clock kernel with a 15 clock
epilog. Because four channels are processed by the loop, this routine manages to apply
both threshold and a rough 75 ns time cut in just one clock cycle per channel.

OOOOTTEElliimmiinnaattee(()) and almost all functions use custom macros ssttaarrttcclloocckk/ssttooppcclloocckk to keep
track of what runs in parallel with what. Everything with a cclloocckk((NN)) macro will occur in
clock cycle N between the ssttaarrttcclloocckk and ssttooppcclloocckk macros. These and all other custom
macros use the m4 macro language [23] and make particular use of diversion streams for
storing instructions for the various clock cycles.

This is also one of a few functions that use the custom macros ssttaarrttlloooopp/~~ssttoopplloooopp to
generate loops with loop variables. This allows the NN in the cclloocckk((NN)) calls to be
specified as a function of the pass through the unrolled loop, as well as to change the shift
values CCOOUUNNTT11/CCOOUUNNTT22 and the bitmap words BBIITTMMAAPP11/BBIITTMMAAPP22 during each pass.

MMaarrkkNNeeiigghhbboorrss assembly function
1. Reads the existing bitmap.
2. Marks neighbors for hits as required. Also masks out bad channels.
3. Updates the existing bitmap.

Performance: 20 DSP clocks per neighbor width (interrupt safe)

MMaarrkkNNeeiigghhbboorrss(()) is a simple function that shifts bitmap words left and right and bitwise
ORs them back in. Multiple iterations of this function can mark multiple neighbors, and
even one invocation has the effect of bridging gaps caused by removed bad channels.
There is also an option to select transverse mode so that neighbors are not marked across
layer boundaries (the six word bitmap represents all four transverse layers).

PPaarrsseeBBiittmmaapp assembly function
1. Reads four time slices from the input buffer and the existing bitmap.
2. Associates bitmap hits with actual samples from the timeslices.
3. Stores a linked list of samples and a buffer of channel offsets.

Performance: 7 * (# of hits) + 28 DSP clocks (interrupt safe)

PPaarrsseeBBiittmmaapp(()) is a very typical two-pass loop, meaning that the routine parallels with
itself halfway through. As with most of the assembly functions, many client-preserved
registers (A10-A15, B10-B15, and B3) must be saved to memory before being used.

 41

FFiinnddPPeeaakk assembly function
1. Reads the existing linked list of samples, the channel offsets, and the calibration

constants and saturation values for each channel.
2. Identifies and records clusters along with numerators and denominators for the

three channels in each cluster to be used for time computation.
3. Stores a linked list of clusters with numerators and denominators.

Performance: 10 * (# of hits) + 28 DSP clocks (interrupt safe)

This is another two-pass loop that has the added feature of using custom macros
ssttaarrttppaassss/~~ssttooppppaassss to produce two nearly-identical functions FFiinnddPPeeaakkBB(()) and
FFiinnddPPeeaakkCC(()). The section in the oonn__ppaassss(()) macro call differs for each pass of the macro
and allows the two functions to do slightly different things as needed. In this case, the
difference is which sample (B or C) is used to determine the largest channel for time
estimation.

CCaallccuullaatteeTTiimmee assembly function
1. Reads the existing linked list of clusters and the list of time offsets for channels.
2. Calculates a time for each cluster using the largest channel and matches it to the

times based on the side channels.
3. Updates the linked list of clusters to include the times with a bit indicating

whether the time computation succeeded.

Performance: 14 * (# of clusters) + 34 DSP clocks (interrupt safe)

CCaallccuullaatteeTTiimmee(()) is another two-pass loop with multiple versions produced using
ssttaarrttppaassss/~~ssttooppppaassss. To speed calculation, the central time is computed to a fixed
precision of 12 bits by shifting both numerator and denominator before dividing. To
avoid doing this expensive operation three times, the side channels are verified to be
within a window of the central time by cross-multiplying.

CCuuttTTiimmee assembly function
1. Reads the existing linked list of clusters.
2. Applies a cut to reduce the acceptance window to a programmable amount.
3. Updates the linked list of clusters to remove the cut clusters.

Performance: 3 * (# of clusters) + 7 DSP clocks (interrupt safe)

 42

CCuuttTTiimmee(()) is another unrolled function that uses startloop/~stoploop. Unlike
OOOOTTEElliimmiinnaattee(()), however, this function does not run for a fixed number of loop
iterations. There are enough copies of the loop to handle the largest number of loop
iterations that might be needed, and a decreasing counter tells us when to branch back to
the return address. This "run out" technique allows a small kernel (less than the 6 clocks
it takes to branch and wait for delay slots) to be implemented without dealing with
complicated multiple-branching techniques.

AAddddBBiittmmaapp assembly function
1. Reads the existing linked list of clusters.
2. Computes cluster bitmap words and determines which pairs of words are non-

zero.
3. Updates the linked list of clusters to include the bitmap words and BitmapPresent

bits.

Performance: 14 * (# of clusters) + 36 DSP clocks (interrupt safe)

AAddddBBiittmmaapp(()) is another two-pass loop, but this one makes extensive use of lookup tables
(LUTs) to compute the bitmaps quickly. LUT techniques are useful for many situations
such as bit counting and reversal, but it can be difficult to balance the trade off between
speed and LUT memory usage.

LLiinnkkLLiisstt assembly function
1. Reads the existing linked list of clusters and the existing linked list of samples.
2. Splices the linked lists so that cluster words come before the corresponding

samples.
3. Updates the linked lists of samples and clusters to form a single list.

Performance: 6 * (# of clusters) + 8 DSP clocks (interrupt safe)

LLiinnkkLLiisstt(()) is a very straightforward two-pass loop. The power of LLiinnkkLLiisstt(()) is in the hand
calculations used to decide which linked list pointers need to be modified and to what
value. These formulae are simply churned through and the corresponding values are
written. This function also uses a special LUT stored in a single word...shifting by a
variable amount allows one of the many small bit patterns to be extracted.

 43

OOuuttppuuttRReessuullttss assembly function
1. Reads the existing linked list of clusters with samples.
2. Generates the final output by walking the linked list.
3. Stores the final output in the output buffer.

Performance: 3 * (# of hits) + 6 * (# of clusters) + 15 DSP clocks (interrupt safe)

OOuuttppuuttRReessuullttss(()) has to perform a task that is normally very inefficient on a deeply
pipelined processor: walking a linked list. Because of the four delay slots after each load
instruction, it is not possible to walk a standard linked list in less than five clocks per
node. To get around that, we use a "pipelined" linked list that effectively stores the
pointer to the node after the next. This allows the code to hide the delay slots properly.
To further simplify things given the typical use of large contiguous sections of memory, a
relative pointer is used that specifies how many bytes to skip in addition to the three
words normally advanced by. These skip words are zero when the next node follows
immediately and need only be non-zero in the node two before a splice.

This routine uses the more traditional multiple branch technique to get a loop half the size
of the usual branch plus delay slots. Because walking such a custom linked list presents
the risk of wandering off into random memory on a fatal glitch, the routine aborts after
about 500 words are copied.

C++
In addition to the assembly code, it is important that the C++ code connecting these
functions be as efficient as possible. Separately-compiled functions like FFaassttCCooppyy<<>>(())
and FFaassttCCooppyySSttrriiddee<<>>(()) are used to avoid problems pipelining loops with vvoollaattiillee
reads/writes, and every effort is made to get all loops to pipeline when possible.

 44

Calibration array
SSttaattuuss..BBaassiicc..CCaalliibbrraattiioonn is a pointer to a 1 kW buffer used to store Decoder initialization
information. The format of this information for the SPU Decoder is:

• Bitmap of bad channels
6 words, unsigned
Any values are allowed

• Precision layer number

1 word, unsigned
0-3 if precision, 0 if transverse

• Neighbor count

Number of times to invoke MMaarrkkNNeeiigghhbboorrss(()) function
1 word, unsigned
No more than four times permitted

• Minimum denominator to allow divide for time

A denominator equal to minimum will fail
1 word, unsigned
Must be between 1 and 0x7FFFFFFF, inclusive

• Final time window

Half-width of the final time cut window in ns, edges fail
1 word, unsigned

• Cross-check time window

Determines the half-width of the cross-comparison time window, edges fail
1 word, unsigned
See below for format and restrictions on the value

• Large cross-check time window boolean

Helps determine the half-width of the cross-comparison time window
1 word, unsigned
Must be 0 (false) or 1 (true)

• Precision DPU boolean

Indicates whether the DPU is precision (true) or transverse (false)
1 word, unsigned
Must be 0 (false) or 1 (true)

• Threshold array

Threshold for OOOOTTEElliimmiinnaattee(()) test, equal to threshold fails
192 halfwords, unsigned
Must be in same order as channels in the timeslice

 45

• Saturation array
Used to decide if sample is saturated low (low halfword) or high (high halfword)
Equal to saturation value fails and cannot be used for time computation
192 words (each word is two packed signed halfwords)
Must be in same order as channels in the timeslice

• Special zero word

Needed to follow saturation array with a zero value
1 word, unsigned
Must be zero

• Calibration array

Used for linear calibration of nominally largest sample before comparing
Pedestal in low halfword, scale factor in high halfword
192 words (each word is two packed signed halfwords)
Must be in same order as channels in the timeslice

• Special zero word

Needed to follow calibration array with a zero value
1 word, unsigned
Must be zero

• Time adjustment in phase B array

Used to adjust computed times by a signed halfword in ns
192 halfwords, signed
Must be in same order as channels in the timeslice, used for phase B
Absolute value must be no more than 1000

• Time adjustment in phase C array

Used to adjust computed times by a signed halfword in ns
192 halfwords, signed
Must be in same order as channels in the timeslice, used for phase C
Absolute value must be no more than 1000

The cross-check time window (used to compare side channel times with the central
cluster time) has a complicated format due to restrictions imposed by the assembly code.
The lower halfword of the time window is a shift factor s, while the upper halfword is a
multiply factor m. The requirement is that m must be between 0 and 8 inclusive.

When the large cross check time window boolean is true, the window half-width in ns is

()sm <<⋅64 . When the large cross check time window boolean is false, the window
half-width in ns is ()sm >>⋅64 . The shifting is done this way to keep the values small
enough to fit in 32 bit words no matter what shift value is needed.

 46

RPU

Neutron rejection algorithm
The RPU is the first point at which all four layers of the chamber are available together.
This offers the option to reject neutrons and photons by looking for tracks in the chamber.
The algorithm for this must be simple and scale well with the number of clusters. The
occupancy is still low, but the worst-case performance can blow up severely if the scaling
is bad because of the 960 channels of data possible in the RPU.

Neutrons and photons typically only deposit their energy in one layer, while muons pass
through all four. Because of this, a cluster that has a corresponding cluster in another
layer is more likely to be a muon and less likely to be a neutron or photon. We keep any
cluster that has a corresponding cluster in any of the three other layers, and reject only
those clusters that have no corresponding cluster in any layer. To allow for track
inclination, corresponding clusters in neighboring layers must either overlap or be
touching each other at the edges. For example, a cluster in channels 5-12 would match
with a cluster in channels 13-19 in the next layer. If the layers are separated by one
intervening layer, then there can be a single channel gap between the two clusters. For
example, a cluster in channels 5-12 would match with a cluster in channels 14-19.
Finally, if there are two intervening layers than a gap of two channels is allowed.

The neutron rejection algorithm easily keeps all muons while rejecting approximately
94% of neutrons and photons [18]. After neutron rejection, the clusters are formatted and
output as one half of an ATLAS standard Event fragment.

 47

Neutron-rejected data format

Events

RPU status headerData

Common Header

Normal Event Error Event Discard Event

Common header

0 0 0 0 M

3 M

2 M

1 M

0 0 0 0 0 T

3 T

2 T

1 T

0 S

15S

14S

13S

12 S

11S

10S

9 S

8 S

7 S

6 S

5 S

4 S

3 S

2 S

1 S

0
• M = Module ID
• T = Type of Event (0 = Normal, 1 = Discard, 2 = Error)
• S = Size of Event (in words, including the common header and ghost words)

Data

Cluster 2

Cluster 1

Cluster 0

...

C

7 C

6 C

5 C

4 C

3 C

2 C

1 C

0 r

1 r

0 T P F

3 F

2 F

1 F

0 D

15D

14D

13D

12 D

11D

10D

9 D

8 D

7 D

6 D

5 D

4 D

3 D

2 D

1 D

0

C

31C

30C

29C

28 C

27C

26C

25C

24 C

23C

22C

21C

20 C

19C

18C

17C

16 C

15C

14C

13C

12 C

11C

10C

9 C

8 C

7 C

6 C

5 C

4 C

3 C

2 C

1 C

0

A

31A

30A

29A

28 A

27A

26A

25A

24 A

23A

22A

21A

20 A

19A

18A

17A

16 A

15A

14A

13A

12 A

11A

10A

9 A

8 A

7 A

6 A

5 A

4 A

3 A

2 A

1 A

0

• A = SCA addresses (first timeslice in high byte)
• C = Cluster counts (first precision in high byte of first word)
• r = Reserved (may have any value)
• T = Trigger type (priority)
• P = Trigger/sampling phase (0 = sample B closer to nominal peaking time, 1 = C)
• F = First bit summary (first timeslice in high bit)
• D = Number of data words that follow in clusters

 48

Cluster

Sample words

Cluster words

Cluster words

0 0 0 F T

11T

10T

9 T

8 T

7 T

6 T

5 T

4 T

3 T

2 T

1 T

0 W

15W

14W

13W

12 W

11W

10W

9 W

8 W

7 W

6 W

5 W

4 W

3 W

2 W

1 W

0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 S P

2 P

1 P

0 E M L

1 L

0 D C

7 C

6 C

5 C

4 C

3 C

2 C

1 C

0

• S = Size bit (big or small CSC chamber)
• P = Phi angle
• E = Eta (endcap)
• M = Multilayer (0)
• L/D/C = Layer/Direction/Channel number (D = 0 for precision, 1 for transverse)
• F = Failed to compute time (time will be 0)
• T = Time (signed, in nanoseconds)
• W = Width of cluster (number of sample word pairs)

Sample words

C

15C

14C

13C

12 C

11C

10C

9 C

8 C

7 C

6 C

5 C

4 C

3 C

2 C

1 C

0 D

15D

14D

13D

12 D

11D

10D

9 D

8 D

7 D

6 D

5 D

4 D

3 D

2 D

1 D

0

A

15A

14A

13A

12 A

11A

10A

9 A

8 A

7 A

6 A

5 A

4 A

3 A

2 A

1 A

0 B

15B

14B

13B

12 B

11B

10B

9 B

8 B

7 B

6 B

5 B

4 B

3 B

2 B

1 B

0

• A = sample A
• B = sample B
• C = sample C
• D = sample D

 49

RPU status header

SPU status header (SPU 4)

SPU status header (SPU 3)

SPU status header (SPU 2)

SPU status header (SPU 1)

SPU status header (SPU 0)

SPU status header

Status words (timeslice D)

Status words (timeslice C)

Status words (timeslice B)

Status words (timeslice A)

Status words

S

31S

30S

29S

28 S

27S

26S

25S

24 S

23S

22S

21S

20 S

19S

18S

17S

16 S

15S

14S

13S

12 S

11S

10S

9 S

8 S

7 S

6 S

5 S

4 S

3 S

2 S

1 S

0

S

31S

30S

29S

28 S

27S

26S

25S

24 S

23S

22S

21S

20 S

19S

18S

17S

16 S

15S

14S

13S

12 S

11S

10S

9 S

8 S

7 S

6 S

5 S

4 S

3 S

2 S

1 S

0

S

31S

30S

29S

28 S

27S

26S

25S

24 S

23S

22S

21S

20 S

19S

18S

17S

16 S

15S

14S

13S

12 S

11S

10S

9 S

8 S

7 S

6 S

5 S

4 S

3 S

2 S

1 S

0

S

31S

30S

29S

28 S

27S

26S

25S

24 S

23S

22S

21S

20 S

19S

18S

17S

16 S

15S

14S

13S

12 S

11S

10S

9 S

8 S

7 S

6 S

5 S

4 S

3 S

2 S

1 S

0

S

31S

30S

29S

28 S

27S

26S

25S

24 S

23S

22S

21S

20 S

19S

18S

17S

16 S

15S

14S

13S

12 S

11S

10S

9 S

8 S

7 S

6 S

5 S

4 S

3 S

2 S

1 S

0

S

31S

30S

29S

28 S

27S

26S

25S

24 S

23S

22S

21S

20 S

19S

18S

17S

16 S

15S

14S

13S

12 S

11S

10S

9 S

8 S

7 S

6 S

5 S

4 S

3 S

2 S

1 S

0

• S = Status words from BPI

Ghost words
At the end of Events can be added one or more ghost words. The presence of these words
can be inferred by comparing the reported total size with the actual size of any data words
and known headers. These words are not used in normal running and should be ignored
by ATLAS software. The primary use of these words is to aid debugging during
commissioning.

The current ghost words are the Status header.

 50

Implementation
More so than even the SPU, the greatest challenge of the RPU Decoder is controlling the
worst-case performance. Because of the low occupancies, there is a huge difference
between the typical Event and the worst-case Event. It was important during design to
allow the case of all channels hit to be performed efficiently because this can happen if an
anode wire is struck and gets an induced charge. Thanks to extensive use of cluster-based
algorithms, the worst case on both the SPU and RPU is the minimum number of channels
per cluster with a gap of one channel between clusters. There is only one assembly
language routine used in processing on the RPU:

NNeeuuttrroonnRReejjeecctt assembly function
1. Reads the clusters and samples sent from the SPU.
2. Applies neutron rejection to all clusters in all layers.
3. Stores passing clusters to the output buffer.

Performance: 2 * (# of hits) + 11 * (# of clusters) + 39 DSP clocks (disables interrupts)

NNeeuuttrroonnRReejjeecctt(()) is the most complicated single assembly language function in the DPU.
It is a three-pass loop that branches out to a run-out routine to copy the cluster's samples
when it passes neutron rejection. Thanks to the effort that went into this function, the
RPU can handle even the absolute worst case in less than 10,000 DSP clocks as required.

 51

Calibration array
SSttaattuuss..BBaassiicc..CCaalliibbrraattiioonn is a pointer to a 1 kW buffer used to store Decoder initialization
information. The format of this information for the RPU Decoder is:

• Precision overlap count
Determines how much track inclination is allowed in precision layers
1 word, unsigned
See below for format and restrictions on the value

• Transverse overlap count

Determines how much track inclination is allowed in transverse layers
1 word, unsigned
See below for format and restrictions on the value

• Channel mask

Contains bits to be bitwise ORed into all channel numbers
1 word, unsigned
Only bits 1 (0x2) through 16 (0x10000) may be set

The precision and transverse overlap counts tell the RPU how many extra bits to set in
the bitmaps before bitwise ANDing with the cluster bitmap and looking for overlap.
When the overlap count is zero, clusters must have actual overlap in order to be
considered a match. When the overlap count is one, clusters that would touch without
overlap if placed in the same layer will match. When the overlap is two or more, then
clusters that would have a gap of the overlap count minus one if placed in the same layer
will match. The only value allowed for the overlap count is one, but this can be changed
with a small modification to the RPU.h file.

The value sent in the overlap count is used for neighboring layers. If there is one
intervening layer, twice the overlap count is used. If there are two intervening layers,
three times the overlap count is used. Thus the overlap count is a measure of how much
the track can be inclined.

 52

Implementation

File Layout

Base Files

main.cpp

Starting point, high-
level routines

common.h/.cpp

Included by all files,
also includes shared.h

shared.h

Included by all files and
by the HPU

fault.h

List of all Fault codes in
C++ macros

Driver Files

DMA.h/.cpp

TTCChhaannnneell class for controlling
DMA channels

FPGA.h/.cpp

Functions for initializing FPGAs
and reading/writing registers

Timer.h/.cpp

TTTTiimmeerr class for measuring time
intervals

Platform.h

Constants that specify memory
extents for the current DSP type

mini_dpu.h

TTMMiinniiDDPPUU class for XFPGA init,
included by FPGA.h/.cpp

6202.cmd/6203.cmd

Linker command files for 6202
and 6203 DSPs

Hardware Abstraction Layer (HAL) Files

Status.h

Status struct access and
Basic initialization

Policy.h

Policy system access
and initialization

Parameter.h

Parameter system access
functions

Response.h

Response buffer
functions for decoders

Queue.h

Input/output queue
classes

PriorityQueue.h

TTPPrriioorriittyyQQuueeuuee class for
Tasks

Heap.h

TTHHeeaapp class for Task
memory

HAL.cpp

Instance definitions for
the HAL headers above

struct.h

Declaration of TTSSttaattuuss
struct, included by HPU

Util.h/.cpp

LED and performance
monitor utilities

simulate.h

Functions used to fill
input buffers for testing

HALControl.h/.cpp

TTCCoonnttrrooll interface for
the HAL and Drivers

 53

Policy\policies.h

Point of declaration for
all Policy modes

Policy\include.h

Point of inclusion for all
Policy mode headers

Policy\dt_input.h

Input data type Policy
mode header

Policy\dt_output.h

Output data type Policy
mode header

Queue\input.h

UUppddaattee(()) functions for
input

Queue\input.cpp

IInniittiiaalliizzee(())/TTeerrmmiinnaattee(())
functions for input

Queue\output.h

UUppddaattee(()) functions for
output

Queue\output.cpp

IInniittiiaalliizzee(())/TTeerrmmiinnaattee(())
functions for output

Data System Files

DataControl.h/.cpp

TTCCoonnttrrooll interface for
the Data system

Data.h/.cpp

Data system main
functions

decoder.h

TTDDeeccooddeerr base class for
Decoders

enum.h

Enum of all Decoders,
included by HPU

decoders\decoders.h

Point of declaration for all
Decoders

decoders\include.h

Point of inclusion for
all Decoder headers

decoders\SPU.h

Decoder class for SPU
Decoder

decoders\RPU.h

Decoder class for RPU
Decoder

decoders\Timeslice.h

Early test version of a
timeslice Decoder

decoders\SIT.h

System Integration Test
Decoders

decoders\Beamtest.h

Decoders used during the
beam test

decoders\DXTest.h

Decoders used for DX
testing

Command System Files

CommandControl.h/.cpp

TTCCoonnttrrooll interface for the
Command system

Command.h/.cpp

Command system
main functions

function.h

TTFFuunnccttiioonn base class
for Functions

fenum.h

Enum of all Functions,
included by HPU

functions\functions.h

Point of declaration for all
Functions

functions\include.h

Point of inclusion for all Function
headers

functions\Basic.h

Basic functions and ones used to
control the Scheduling system

 54

Scheduling System Files

SchedulingControl.h/.cpp

TTCCoonnttrrooll interface for the
Scheduling system

Scheduling.h/.cpp

Scheduling system
main functions

task.h

TTTTaasskk base class for
Tasks

tenum.h

Enum of all Tasks,
included by HPU

tasks\tasks.h

Point of declaration for all Tasks

tasks\include.h

Point of inclusion for all Task
headers

tasks\Hardware.h

Tasks used to monitor hardware
such as temperature

HPU Files

common.h

Wrapper for shared.h

Data.h

Wrapper for Data\
decoders\decoders.h

Command.h

Wrapper for Command\
functions\function.h

Scheduling.h

Wrapper for Scheduling\
tasks\tasks.h

Status.h

Wrapper for
HAL\struct.h

gui.h

Wrapper for fault.h

Copies of: shared.h fault.h HAL\struct.h
Data\decoders\decoders.h

Command\functions\function.h
Scheduling\tasks\tasks.h

 55

Status Structure
The Status structure is a C++ POD struct used to communicate with the HPU. There are
three main sections:

Basic Section
Version information
Initialization control
Boot information
Hardware configuration
Mode configuration
Task configuration
Mode overrides
Data-Scheduling-Command priority configuration
Orders
Warnings
Faults
Run configuration

Processing Section
Event processing counters
Time information
Discard counters
Event output counters
Performance counters
Temperature monitoring

Buffer Section
Parameter set pointers
Response buffer pointer and index
DIB/DOB priority information
Command buffer pointer and priority
Scheduling priority

The struct is accessible by both the DPU and the HPU (via DPU Control). A comment is
made for each item defining which DSP is allowed to read/write at what stage of
operation to prevent conflicts.

In retrospect, some sort of double buffering would have been preferable to allow the HPU
to get a consistent snapshot of various counters and flags that are constantly being
updated by the DPU. Fortunately this functionality has not been needed, primarily due to
the use of the Command and Response buffers for most critical communications.

 56

Policy System
The Policy system maintains a small database of configuration options based on input
and output data types. For each possible input or output types, there are several values
stored that describe the data and how it fits into the input/output buffers:

Input
IInnppuuttEEvveennttLLeennggtthh Number of Packets per Event
IInnppuuttMMaaxxPPaacckkeettLLeennggtthh Maximum number of Frames per Packet
IInnppuuttFFrraammeeSSiizzee Size of a Frame, in words
IInnppuuttYYeelllloowwBBaarr Threshold for setting priority Yellow (# of unused Frames)
IInnppuuttRReeddBBaarr Threshold for setting priority Red (# of unused Frames)
IInnppuuttTTrraannssffeerrCCoouunntt[[44]] Number of events to DMA in at various priorities

Output
OOuuttppuuttEEvveennttLLeennggtthh Number of Packets per Event
OOuuttppuuttMMaaxxPPaacckkeettLLeennggtthh Maximum number of Frames per Packet
OOuuttppuuttFFrraammeeSSiizzee Size of a Frame, in words
OOuuttppuuttYYeelllloowwBBaarr Threshold for setting priority Yellow (# of unused Frames)
OOuuttppuuttSSkkiippLLeennggtthh Used to control padding and sending of size word in output

For every possible data type, there is a set of constants in the
DDPPUU::::PPoolliiccyy::::PPrriivvaattee::::<<nnaammee ooff ddaattaa ttyyppee>> namespace that corresponds to the above
values. During initialization, these are copied to a set of read-only variables in the
DDPPUU::::PPoolliiccyy::::PPuubblliicc namespace. This way, a Decoder can choose to use the constant
values in the private namespace or the run-time values in the public namespace. Using
the public variables is more flexible, but using the constants in the private namespaces
allows for maximum performance for time-critical Decoders. Decoders that do not use
the public values will report whether they are compatible with the current values and not
be loaded during the run if they are not.

The read-only variables are actually instances of a template class TTEEnnttrryy that takes the
type of the variable as its template parameter. The cast operator for that type is
overloaded to allow the instance to act like a variable of that type when read, while
assignment is restricted to the Policy system initialization functions.

 57

Input/Output Queues
One of the most important aspects of a clean DPU software design is separation of buffer
management from data processing. To that end, the input and output queue classes handle
all internal aspects of data flow and present a simple interface to Decoders. Furthermore,
the layout of the generic event is designed to decouple data flow from data processing by
making the input/output queues independent of the data type.

At first glance, the need for a single interface to multiple buffer operational modes
(different external sources, variable vs. fixed-length events) suggests the use of virtual
functions. More specifically, the Template Method Pattern [22] would allow the sharing
of common code with virtual functions to perform the mode-specific operations such as
setting up for output or checking whether an entire event is available. However, this has
two main problems: the Template Method Pattern would use one virtual function call per
function requiring specialization, and it would also require dynamic memory allocation of
an instance of one of the derived classes in the queue hierarchy. This contradicts our
desire for maximum performance and to avoid dynamic memory allocation. As will be
seen below, the solution is to use specialization of template functions in place of virtual
functions and use a single member function pointer to duplicate the virtual function call
mechanism without dynamic memory allocation.

TQueue
ReadIndex
WriteIndex

Size

TIQSetup
Initialize()
Update()

Terminate()

TOQSetup
Initialize()
Update()

Terminate()

TInputQueue
GetIQSetup()

pop()

TOutputQueue
GetOQSetup()

push()

Figure 27: Class hierarchy for the input/output queues

 58

The base class for both input and output queues is a struct called TTQQuueeuuee. This does not
reflect commonality of interface but rather implementation, so protected inheritance is
used. The derived classes, TTIIQQSSeettuupp and TTOOQQSSeettuupp, contain the input/output queue-
specific data members and most of the functionality of the queues. As with other parts of
the DPU software, these classes support IInniittiiaalliizzee(()), UUppddaattee(()), and TTeerrmmiinnaattee(()), and most
of the work is done in UUppddaattee(()). In particular, UUppddaattee(()) is responsible for keeping data
flowing and getting prepared to pass the next event through the Decoder that requests it.

Logically one might expect to see ppuusshh(()) and ppoopp(()) found in these classes, but this opens
up a problem. The triplet of IInniittiiaalliizzee(()), UUppddaattee(()), and TTeerrmmiinnaattee(()) (and their helper
functions) are only supposed to be used by HAL Control during the corresponding
phases, but these would also be available to every Decoder with no way to detect a
misuse. This same problem was even more serious in the design of the DMA channel
class TTCChhaannnneell, and the solution there was to use protected inheritance to hide the
interface. For the queue classes, this means using protected inheritance to derive the leaf
classes TTIInnppuuttQQuueeuuee and TTOOuuttppuuttQQuueeuuee from TTIIQQSSeettuupp and TTOOQQSSeettuupp, respectively.
These leaf classes are where functions like push and pop reside, and a single public
function GGeettIIQQSSeettuupp(())/GGeettOOQQSSeettuupp(()) provides a reference to the protected base so HAL
Control can access it from the instances of TTIInnppuuttQQuueeuuee/TTOOuuttppuuttQQuueeuuee we create. The
important thing to note is that this does not prevent intentional misuse, but rather
produces a compile-time error if there is any unintentional use. This is less significant for
the queue classes, but proved invaluable in the DMA channel classes where catching such
misuse revealed a design flaw in how certain initialization was being done.

The question remains of how to implement the above functions. Essentially, the goal is to
make a single indirect function call through a function pointer during UUppddaattee(()) and leave
helper functions and ppuusshh(())/ppoopp(()) as ordinary function calls. Making ppoopp(()) an ordinary
call is done by filling a data structure during UUppddaattee(()) with everything needed to find the
next Event and pop some or all Packets off. The ppuusshh(()) function is even simpler as the
information it needs is provided by the buffer pointers and the function call parameters.

The function TTeemmppllaatteeUUppddaattee(()) takes care of the work to be done in UUppddaattee(()). This is a
template function whose template parameters are an enum for the buffer type and a bool
for whether the Events are fixed or variable-length. TTeemmppllaatteeUUppddaattee(()) can be specialized
completely if necessary, but we can also follow the Template Method Pattern and write a
single version of the code that calls helper template functions that get specialized instead.
The only thing remaining is storing a pointer to TTeemmppllaatteeUUppddaattee(()) during IInniittiiaalliizzee(()) and
calling that in our UUppddaattee(()) function. Pointers to member functions like
TTeemmppllaatteeUUppddaattee(()) generally incur size overhead in order to accommodate things like
virtual functions, and on the TI DSP these pointers are two words instead of one. To
avoid having to load two words during the indirection, we make a friend template
function ss__UUppddaattee(()) that is passed a pointer to the queue instance and calls the
corresponding TTeemmppllaatteeUUppddaattee(()) function on it. A pointer to one of the specializations of
ss__UUppddaattee(()) is stored in pp__UUppddaattee and called by UUppddaattee(()) by passing the tthhiiss pointer. This
gives all the advantages of the Template Method Pattern with a single virtual function
call emulated with a function pointer to avoid dynamic memory allocation.

 59

Task Priority Queues

Priority Queues
A priority queue is a container that sorts its elements and presents only the highest
priority item for removal. This is ideal for use in the Scheduling System for holding Task
Capture and Service requests.

Priority queues are generally implemented using a partially sorted binary tree called a
binary heap. Each element can have up to two children with the condition that an element
is of equal or greater priority than either child. A binary heap with N items occupies the
lowest N elements of the array containing it and grows upwards as new items are added.

Standard Template Library
The C++ Standard Template Library (STL) contains an adaptor called pprriioorriittyy__qquueeuuee that
can be used to convert a container class (such as vveeccttoorr) into a priority queue [8]. There
are several problems with using this in the DPU software:

• All the container classes, including vveeccttoorr, use dynamic memory allocation
• Half of the memory will be wasted if there are separate Capture and Service

priority queues because a given Task will have a request in one or the other but
never both at the same time

• The TI DSP libraries do not include the STL

Custom Priority Queue
To resolve this, we need a custom version of pprriioorriittyy__qquueeuuee that has two features:

• No use of dynamic memory allocation
• Shares memory space between the Capture and Service queues

The basis for this new class, called TTPPrriioorriittyyQQuueeuuee, is the implementation of the STL
pprriioorriittyy__qquueeuuee from a free open-source library called STLPort [40]. Instead of relying on
an STL container class, this adaptor is modified to use a fixed-size array of memory and
report a Fault if the array overflows.

To address the issue of shared memory, we duplicate the code for managing the binary
heap and reverse it so it controls a heap starting at the last element of the array and
growing downward. Combining these two versions gives us a two-sided binary heap that
will inherently allow memory to be shifted between the Capture and Service priority
queues automatically.

Free SpacePriority Queue A
Item 0

Priority Queue A
Item 1

Priority Queue B
Item 0

Priority Queue B
Item 1

Figure 28: Allocation of memory between the two priority queues with free space between

 60

Task Heap
The one place where dynamic memory allocation is needed is the Scheduling System to
allow for runtime creation of Tasks. Unfortunately the built-in C++ nneeww operator is
optimized for size efficiency and cannot meet our real-time constraints [41]. The simplest
memory allocation algorithm we could use is to partition a large buffer into fixed-size
chunks large enough to hold the largest possible Task. This would work fine if most
Tasks were of comparable size, but we expect to have small Tasks for monitoring a single
quantity and large Tasks for Event capture and histogramming. A one-size-fits-all
approach would be very inefficient. Having two buffers using two different sized chunks
could work, but we might find ourselves with no free memory in one buffer and plenty of
free memory in the other. What we would like is to find a solution similar to the double-
ended priority queue that would allow us to collocate the small and large chunks while
allowing for inevitable fragmentation of memory.

The solution is to choose the large chunk size to be a power-of-two multiple of the small
chunk size (for efficiency we choose both chunk sizes to be powers of two). The buffer is
divided into large chunks that can be allocated for larger Tasks. If a smaller Task is
needed, a large chunk can be subdivided into several small chunks (the ratio of the two
sizes) and those small chunks can be handed out.

Free Space Free Space
Free SpaceFree Space

Small Chunk

Small Chunk

Small Chunk

Large Chunk Large Chunk

Small Chunk

Figure 29: A typical allocation of large and small chunks in the Task heap

The large chunks are managed by a set of TTHHeeaappNNooddee instances that contain a bitmap
indicating which contained small chunks are in use when subdivided. These are created in
a static array and the index in the array is the index of the corresponding large chunk of
memory being managed. Each TTHHeeaappNNooddee instance stores previous/next indices and they
are initially connected to form a doubly linked list that contains all free large chunks.
When a large chunk is needed, the head of this list is removed and the corresponding
chunk is given out for use. When the first small chunk is needed, the first small chunk in
the head of the free large chunk list is marked as used in the bitmap and the TTHHeeaappNNooddee
instance is moved to a new list for large chunks with one small chunk in use. There are
similar lists for large chunks with two, three, or any number of small chunks in use
including all of them. When a new small chunk is needed, the lists are checked to find the
large chunk with the fewest small chunks free. Using this large chunk helps minimize
memory fragmentation.

 61

To free memory the address is used to locate the corresponding TTHHeeaappNNooddee instance (and
the small chunk within it if necessary). If it is a large chunk being freed then the chunk is
simply placed at the head of the free large chunk list. If it is a small chunk then the
bitmap is updated to free the small chunk and the TTHHeeaappNNooddee instance is moved to the
list that corresponds to the new number of small chunks in use. This requires splicing the
list around the TTHHeeaappNNooddee instance where it is removed (which requires doubly-linked
lists).

Allocating a large chunk, freeing a large chunk, and freeing a small chunk are all
constant-time operations. Allocating a small chunk is linear in the ratio of the large and
small chunk sizes (the head of each list must be checked to find the large chunk with the
fewest free small chunks). Since this ratio is fixed, this is also constant time and does not
scale with the total number of memory chunks.

 62

Testing

Real data, realistic data, and arbitrary data
When testing to find errors and verify proper operation, there are three possible inputs
that can be used:

• Actual data from the front end

• Simulated data that replicates the front end

• Arbitrary random data that fits the input format

At first glance, it would seem that actual data would always be ideal for testing. After all,
this is the same kind of data that will be used in the final system. The same argument
could be made for accurate simulated data, with the added advantage of being able to
generate as much test data as desired. However, consider the case of a bug that only
manifests in an obscure case that is unlikely to occur. Using actual or simulated data is
far less likely to uncover this bug, but the consequences of not finding the bug are still
very serious.

If a bug occurs for only a single input and no others, it wouldn't matter how you chose
test input; either it would be found or it would not be found, depending on whether you
lucked into using the one input that causes it. Fortunately real bugs tend to occur for a
variety of similar cases or when a certain condition occurs, and they are not restricted to
the range of typical inputs. In fact, uncaught bugs are more likely to be found in boundary
cases where an unusual condition occurs that was not anticipated when designing for the
general case. In this case, distributing test cases widely throughout the entire range of
possible inputs is more likely to catch all bugs than focusing them in the typical input.

Moreover, there are many places where realistic inputs will be used during testing and
commissioning, so these already get extra focus. Therefore, it is best to use random and
arbitrary input to test for accuracy and locate bugs.

 63

Testing vs. design for performance
When it comes to high performance software, testing alone cannot guarantee that a non-
trivial program is able to meet hard real-time requirements. This is because the program
contains many possible decision paths and the worst-case performance may be on a path
that was not exercised. To avoid this, it is important to keep the core logic
straightforward to avoid seeing large differences in execution time for different input
conditions. This links back to the previous discussion of design rules that said we can't
have loops that run an indeterminable number of times.

Assembly language functions make performance determination simpler because their
clock cycles can be counted directly. Thus the goal of performance testing is to determine
the additional cost for the remaining C++ code so that the final performance can be
examined. Once complicated logic is simplified, it is possible to run over a sample of
realistic data and look at the average and maximum processing time per Event. With
these numbers in hand and verified acceptable, the known assembly language function
run times can be used to scale these times to higher rates

Because we anticipate running various Tasks, the performance will ideally have
headroom for running them. Since Tasks are non-critical and can be shutdown if needed
to keep up, this headroom ensures a large safety factor is available for the primary data
processing.

 64

Faults and Warnings
Testing does not stop once the final system is online. During normal operation a number
of checks are done to catch possible errors. Failure of these tests represents a fatal design
flaw and cannot be tolerated, so a Fault is issued. The result of this Fault is a diagnostic
code sent to the HPU and a total shutdown of all operation. Faults therefore represent a
condition from which recovery is neither possible nor desirable. This addresses the
design requirement that bad data should never be output.

When a less serious error occurs that can be recovered from, a Warning is issued and the
HPU is so informed. For example, there is a Warning issued when the main loop
processing time exceeds the design value, while a Fault is issued if the time exceeds the
maximum time that can be tolerated without potential input buffer overflow. Warnings
allow errors to be detected without spoiling a run that is likely successful. If necessary,
the run data can be rejected after the fact when the cause of the Warning is tracked down.

Beyond Faults and Warnings are a number of assertion tests that are executed only during
initial testing. These tests confirm things that are unlikely to go wrong in a fully
debugged system but which can be valuable to check early on in development. These
tests can often be time-consuming so they cannot be left in the final system. All testing
except performance testing is done with asserts enabled.

The decision to add a Fault or assert check is made by the developer based on his or her
best judgment. Ideally there will be asserts sprinkled liberally throughout the code, with
Faults used in places where an error is deemed potentially likely or particularly serious.
Asserts are often sufficient in places where an error could occur during development but
which need not be tested every time, such as making sure that the pointer returned by the
output buffer is non-zero before dereferencing. Faults are more often needed in situations
where the data being tested comes from an outside source.

 65

Accuracy testing

General
To test the system in a situation close to the final mode of operation, we need to take all
testing operations (simulation of input, checking of output) off the DPU under test. This
is easy to do if we make use of the programmable nature of the Data Exchange. This
allows us to route generated input data through two different DPUs: one that runs the
software under test and another running software that generates equivalent output. A final
DPU runs software to compare the two and determine whether it passes.

Input Simulator

Equivalent Decoder

Decoder to Test

Output Checker

Figure 30: Test setup

Thanks to the flexibility of the DPU software framework, all four DPUs can run the same
software with different Decoders used. The input simulator runs DDPPUU__SSiimmuullaatteeDDeeccooddeerr
and the output checker runs DDPPUU__CCoommppaarreeDDeeccooddeerr.

Generating random input is easily done, but the question remains of how to check the
output. The Decoder algorithm itself is best tested using Monte Carlo simulation to
determine the efficiency, which requires a C++ version with no assembly language that
can be run on other platforms. What we wish to test here is that the algorithm is properly
implemented and produces precisely the output we expect. To meet both goals, the
equivalent Decoder is a bit-accurate simulation of the Decoder under test. To minimize
the chance of making duplicate errors, the algorithm is reimplemented from scratch in as
clear and simple a way as possible. Performance is not a concern here, so completely
different methods can be used to implement the equivalent Decoder. Only the most trivial
of code can be shared between these two implementations.

Because the two Decoders are bit-identical, the output checker has a very simple job. It
compares the two inputs and displays both when an error is found. The data contains the
random number seed used so the Event that caused a problem can be repeated easily.

 66

SPU
The SPU Decoder was tested with a few hundred simulated Events to eliminate bugs.
Further verification with many millions of Events is now needed to confirm that no other
bugs remain.

RPU
The RPU Decoder was tested with a few hundred simulated Events to eliminate bugs but
was not subjected to deeper testing. The RPU algorithm is currently being examined in
more detail to see if neutron rejection should be used, and will be tested further once that
decision is made.

 67

Performance testing
Because we have limited branches and decision points to a minimum, the performance of
the main loop is very close to being a constant plus the performance of the individual
assembly language functions. To put it another way, the processing time varies
significantly only with the number of channels/clusters, and this variation is limited to the
assembly language routines. Because of this, we only need one data point to determine
this constant. To be safe, we run a number of mock events with the same number of
channels/clusters and take the worst time.

The pattern we will use to test is chosen to be higher in occupancy than the real system.
We hope to find this close to our 3000 clock cycle limit and thus have maximum
accuracy in our fit near the critical point. We place four clusters of one channel each and
one cluster of two channels for each SPU, and we place the output of these SPUs into the
RPU. This simulates the worst case where everything passes neutron rejection. One
neighbor is marked on each SPU; the actual transverse will likely not even need this. All
numbers are in DSP clock cycles.

• Precision SPU: 895 in the framework + 2090 in the Decoder = 2985 clocks

• Transverse SPU: 895 in the framework + 2140 in the Decoder = 3035 clocks

• RPU: 1025 in the framework + 2181 in the Decoder = 3206 clocks

The RPU takes longer in the framework because it uses variable-length input.

Now that we have this information, let's look back at the performance numbers for the
assembly language routines when we mark one set of neighbors. Let H be the number of
initial hits without neighbors and let C be the number of clusters. After neighbors are
marked, we will have a total of H + 2C channels being kept.

SPU:

• OOOOTTEElliimmiinnaattee: 241 clocks
• MMaarrkkNNeeiigghhbboorrss: 20 clocks
• PPaarrsseeBBiittmmaapp: 7 * (H + 2C) + 28 clocks
• FFiinnddPPeeaakk: 10 * (H + 2C) + 28 clocks
• CCaallccuullaatteeTTiimmee: 14 * C + 34 clocks
• CCuuttTTiimmee: 3 * C + 7 clocks
• AAddddBBiittmmaapp: 14 * C + 36 clocks
• LLiinnkkLLiisstt: 6 * C + 8 clocks
• OOuuttppuuttRReessuullttss: 3 * (H + 4C) + 15 clocks

RPU:

• NNeeuuttrroonnRReejjeecctt: 2 * H + 15 * C + 39 clocks

 68

The total for the SPU assembly language functions is 20H + 83C + 418 clocks. The RPU
assembly language function must be run five times: four times for precision SPUs and
one time for the transverse SPU. Letting the P subscript denote the precision counts and
the T subscript denote the transverse, the total for the RPU is 8HP + 2HT + 60CP + 15CT +
195 clocks. We can compare these assembly language numbers to the performance test
numbers to determine the actual constants for the total time to process one Event:

• Precision SPU: 20H + 83C + 2450 clocks

• Transverse SPU: 20H + 83C + 2500 clocks

• RPU: 8HP + 2HT + 60CP + 15CT + 2771 clocks

Looking back at the numerology, the precision SPU has an average of 1.1 clusters and 5.4
channels per Event, while the transverse SPU has an average of 4.3 clusters and 8.7
channels. Plugging these in give us the estimated performance:

• Precision SPU: 2650 clocks

• Transverse SPU: 3031 clocks

• RPU: 2962 clocks

When we compare these numbers to the 3000 clocks we have available at a 100kHz
trigger rate, we are concerned. There is no problem currently as the initial design
requirement is only a 75kHz trigger rate, but the question remains what will be done
during the upgrade to 100kHz. As it turns out, the current Decoders contain a number of
runtime checks that ensure proper operation. Most of these checks are unnecessary
because they are only verifying that the system has not produced invalid values at some
point along the way. After years of error-free operation at the lower 75kHz trigger rate it
would be safe to remove these checks during the upgrade, which would save more than
enough time to reach the 3000 clock cycle count needed for 100kHz operation.
Alternatively, faster DSPs may be available at the time of the upgrade.

We can also look at the worst-case performance. Maximizing the cluster count will
maximize the time, so the worst case will be hitting every fourth channel (three channels
per cluster after neighbor marking plus a one channel gap between clusters). This means
48 clusters and 48 channels hit before neighbor marking:

• Precision SPU: 7394 clocks

• Transverse SPU: 7444 clocks

• RPU: 6851 clocks

We are well under the 10000 clock cycle limit we have set.

 69

Conclusion

Summary
The DPU software framework is a flexible, high-performance platform for data
acquisition. With appropriate Decoders the framework can be adapted to many different
uses, and could serve as a starting point for a software framework for a generic ROD. In
the case of the CSC Decoders, performance is acceptable for a 75kHz trigger rate and can
be tweaked to allow for a 100kHz trigger rate if needed.

The reason things are tight for a 100kHz trigger rate is the effort put into making the
worst-case performance acceptable. This is a serious issue in a system with such a low
occupancy (and thus a huge difference between the typical and worst cases). Many tricks
were used to make things constant-time rather than variable, which explains the large
constant terms in all the performance formulae. One advantage to this is it reduces the
need for large amounts of headroom, as the time is not strongly varying with the number
of hits/clusters.

A DSP-based software framework allows for calculations and flexibility not practical on
an FPGA design. The initial FPGA-based sparsifier was expected to perform only the job
of the OOOOTTEElliimmiinnaattee assembly function (along with simple buffer management and
output formatting). Thanks to the DSP and software framework, the SPU Decoder is able
to do far more and even assists the RPU by pre-calculating the cluster bitmaps. To a great
extent, the functionality of the Decoders has expanded to fill the processing time
available. This means maximizing work performed for the same price, and can relieve
some of the burden on later processing stages. This is something that must be considered
when weighing such a flexible solution against a more limited approach using
programmable hardware devices.

 70

Future work
The immediate priority is to complete the verification testing for the SPU, which has
been delayed due to a problem with a computer needed to operate the ROD. This is the
last stage in confirming that the equivalent SPU Decoder is an exact match for the actual
SPU Decoder.

The next step is to perform Monte Carlo simulation using the equivalent Decoders to see
how the algorithms perform. This testing was done earlier using simplified versions of
the algorithms but needs to be reexamined now that the full bit-identical Decoders are
available. This is the final step in verifying that the Decoders are acceptable for
processing data in ATLAS.

The DPU software framework is general enough to use in other situations. The modular
design for the plug-ins is ideal for use in a generic ROD. There are a number of items that
could be improved for this purpose. First, the Status structure acts like a giant global
variable. Refactoring the design to eliminate this would decouple the individual systems
and allow for better unit testing. This is also important if future uses require multiple
input or output buffers with different conditions for deciding when to begin processing.

Once the decoupling is done, additional input and output Event formats can be used. The
current generic Event has been surprisingly flexible with a number of test formats and is
fairly efficient to process, but more flexibility could be added to a new set of queue
classes which could be substituted at compile time. This would not affect the current
performance but would extend the range of possible uses for the framework.

 71

PART II

K Physics in the FDQM

 72

Motivation

Introduction
The Correspondence Principle tells us that a new theory should be as good as the theory it
replaces where the old theory was accurate, and better than the old theory in an area the
old theory was incorrect. Put more simply, the best theory is the one that fits experiment
best. This seems reasonable, but one could devise a purely empirical "theory" that will
always fit experiment perfectly through the use of an arbitrary number of tuned
parameters. This is of no predictive value, so some measure of the quality of fit relative to
the number of tuned parameters is necessary to evaluate theories. One way to do this is to
do a minimization of chi-squared for all possible values of the theory's parameters. This
takes everything into account, but is only useful to evaluate what the best values are. In
the end, the actual value of chi-squared must be examined to determine a confidence
level.

Such confidence levels cannot ever prove a theory, but they can exclude a theory once
there is no possible set of parameter values that could fit experiment with any significant
confidence. To make it easier to get an intuitive feel, multidimensional contour plots of
confidence levels can show what ranges and combinations of parameters are allowed.
These plots can guide physicists in selecting lines of experimental research to explore
further.

 73

CP violation theory in the K system
The K mesons form an octet with the other light spinless mesons of negative parity. The
decay of kaons is of great interest in the study of CP violation because for a time it was
the only system where CP violation had been experimentally confirmed.

0K

 0K

+K

 −K

 −π +π0π
η

Figure 31: SU(3) octet showing the K meson family in Iz - Y space [10]

There are two potential sources for CP violation in the neutral kaon system, and both
have been verified to occur experimentally. The first, indirect CP violation, occurs
because the mass eigenstates differ from the CP eigenstates.

The 0K and
0K are flavor eigenstates, but they are not mass eigenstates because they

mix. They are also not CP eigenstates because the charge conjugation operator switches
particle and antiparticle.

• CP operating on the flavor eigenstates is defined up to a phase: [35]
00 KKCP η= 0*0 KKCP η= 12 =η

 s d

 d

 W

 s

 W

tcu ,,

 tcu ,,

 0K 0K

Figure 32: One of two box diagrams for neutral kaon mixing

 74

• We can write down the CP eigenstates trivially if we choose η to be real:

⎟
⎠
⎞

⎜
⎝
⎛ +=

00
1 2

1 KKK

⎟
⎠
⎞

⎜
⎝
⎛ −= 00

2 2
1 KKK

• But if CP is not a conserved quantity, the mass eigenstates will be different: [21]

⎟
⎠
⎞

⎜
⎝
⎛ +

+
=

00
22

1 KqKp
qp

KL

⎟
⎠
⎞

⎜
⎝
⎛ −

+
=

00
22

1 KqKp
qp

KS

LK and SK are the long and short lived neutral kaons, respectively. These are the
particles with definite mass and lifetime, and are thus the mass eigenstates. Schrödinger's
equation is, in general, a matrix equation that happens to be diagonal in the mass basis.
This fact can be used to relate the unknown matrix elements in the flavor basis to the
measured masses and lifetimes of LK and SK .

• Schrödinger's equation has dispersive and absorptive parts: [21]

() ()0

22

22

1111
*
12

*
12

12121111
Ψ

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

Γ−Γ−

Γ−Γ−
=Ψ iMiM

iMiM
t

dt
di flavor basis

() ()0

2
0

0
2 Ψ

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

Γ−

Γ−
=Ψ

LL

SS

im

im
t

dt
di mass basis

Experimentally, we know that CP violation is very small; this is reflected in the matrix
elements.

• We can place limits on some of the matrix elements: [21]

1212 ReIm MM <<

1212 ReIm Γ<<Γ

1212 ImIm M<<Γ

These approximations allow us to obtain a number of useful relationships when we
diagonalize the matrix for the flavor basis and compare it to the mass basis.

 75

1212 2
Γ−=

iMp *
12

*
12 2

Γ−=
iMq

1212

1212

1212

1212

1212

1212

1212

*
12

*
12

Re
2

Re

Im
2
1Im

1

Re
2

Re

Im
2
1Im

1

Re
2

Re

Im
2
1Im

1

2

2

Γ−

Γ+
−≈

Γ−

Γ+
+

Γ−

Γ+
−

=
Γ−

Γ−
= iM

Mi

iM

Mi

iM

Mi

iM

iM

p
q

()

1212

*
1212

2
122

12
*
12

*
121212

Re
2

Re

Re
222

Γ+≈

Γ−
Γ

−=⎟
⎠
⎞

⎜
⎝
⎛ Γ−⎟
⎠
⎞

⎜
⎝
⎛ Γ−=

iM

MiMiMiMpq

12Re2Re2 Mpqmmm SL ≈=−≡Δ 12Re2Im4 Γ≈=Γ−Γ≡ΔΓ pqSL

Figure 33: Relationships and approximations for the flavor basis matrix elements [21]

• Define a parameter ε that is a measure of indirect CP violation: [21]

ΔΓ−Δ
≈

ΔΓ−Δ

Γ+
≈

Γ−

Γ+
≈⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=

−
=

2

Im
2

Im
2
1Im

ReRe2

Im
2
1Im

1
2
1

2

12

1212

1212

1212

im

Mi

im

Mi

iM

Mi

p
q

p
qpε

Using experimental values for mΔ and ΔΓ , we find that the phase of ε is very close to

4
π

 [14]. The parameter ε represents the deviation of the CP eigenstates from the mass

eigenstates. If CP were conserved, the eigenstates would be the same because the
Hamiltonian would be simultaneously diagonalized in both bases. Thus ε is a measure
of indirect CP violation.

 76

It is also possible to have direct CP violation if the decay amplitudes are CP violating. Of
particular interest are the two pion and three pion final states. If there were no CP

violation, the two pion states −+ππ and 00ππ would both have the same CP as SK .

Similarly, the three pion states 0πππ −+ and 000 πππ would have the same CP as
LK . This is why LK has the longer lifetime: kinematically there is far more phase

space available in the two pion states than in the three pion. Because of CP violation,
however, a small number of LK are able to decay to two pions. By comparing the
amplitude for these to the CP-allowed decays, we get dimensionless measures of direct
CP violation.

• Dimensionless measures of CP violation for pion final states: [10]

S

L

KT

KT

−+

−+

−+ =
ππ

ππ
η

S

L

KT

KT

00

00

00
ππ

ππ
η =

3
' 00ηη

ε
−

= −+

The quantity
ε
ε 'Re is what is generally measured by experiment.

 77

FCNC in the Standard Model and beyond
In the Standard Model, the quark weak eigenstates are not the same as the mass
eigenstates. We can choose to take the up-type quarks as being the same in both the weak
and mass bases, while the down-type quarks are related by the Cabibbo-Kobayashi-
Maskawa (CKM) mixing matrix.

• The CKM matrix converts the mass eigenstates to the weak eigenstates:

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

b
s
d

VVV
VVV
VVV

b
s
d

tbtstd

cbcscd

ubusud

'
'
'

• The signed weak interaction depends on weak eigenstate currents:

()2W
g W J W Jμ μ

μ μ
− + + −= +L

jLiLijiLiL duVduJ μμμ γγ ==− ''

• The down-type neutral weak interaction is unaffected by the CKM matrix:

3
1' '

sin cos sin cos 2 iLZ iL iL iL
W W W W

e ed I d d dμ μγ γ
θ θ θ θ

⎛ ⎞= = −⎜ ⎟
⎝ ⎠

L

Both the up-type and down-type neutral weak interactions remain diagonal in both the
weak and mass bases, while the signed weak interaction picks up a CKM matrix element
in the mass basis. As a result, the Standard Model does not allow tree-level Flavor
Changing Neutral Currents (FCNC). It is possible, however, to have an effective FCNC
at higher order through penguin and box diagrams.

 d d

0Z

 d s

0Z

Figure 34: Quark flavor cannot change in a Standard Model neutral interaction

 78

 d s

 s

 W

 W

 tcu ,, d s

 0Z

 tcu ,, d

 q q

 W

tcu ,,

 tcu ,,

Figure 35: The Standard Model does allow FCNC through penguin (left) and box (right) diagrams

Inspired by some beyond the Standard Model (BSM) theories such as E6 [27], we can add
a single down-type quark that is a singlet under the weak interaction. Such an isosinglet
down quark would mix with other down-type quarks in a 4x4 extension to the CKM
matrix [9]. This is called the Four Down Quark Model (FDQM).

• Approximate version of the 4x4 extension to the CKM matrix: [17]

()
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

−−

−=
−

−−

34444

3423132312

242312

141334123412

1
1

13

24

1413

cVVV
ssesss
esss
esescscc

V

bsd

i

i

ii

δ

δ

δδ

Unlike the regular down-type quarks, the isosinglet down quark has 03 =I . This
changes the down-type neutral weak interaction.

• The down-type neutral weak interaction in the FDQM:

4 4

*
4 4

1 1' ' ' '
sin cos 2 2

1 1
sin cos 2 2

Z iL iL L L
W W

iL iLiL i j jL
W W

e d d d d

e d d d V V d

μ μ

μ μ

γ γ
θ θ

γ γ
θ θ

⎛ ⎞= − +⎜ ⎟
⎝ ⎠

⎛ ⎞= − +⎜ ⎟
⎝ ⎠

L

We now have a non-diagonal term that produces tree-level FCNC. The quantity jiVV 4
*
4

determines the strength of these FCNC.

• Define coefficients of FCNC in the FDQM: [37]

jiij VVU 4
*
4−=

 79

It is most convenient to define effective vertices when working with FCNC in the
Standard Model. These can be compared to the FDQM to find an interesting relationship.

 () ()() () AVAViW
F

i dsdsxSMGSBox −−==Δ 0
2

2

2
2

16
2

π
λ

 ()() () AVAVi
W

F
i dsxBGTBox −−=⎟

⎠
⎞

⎜
⎝
⎛ −= μμ

θπ
αλ 023

sin222
1

 ()[]() () AVAVi
W

F
i dsxBGTBox −−−=⎟

⎠
⎞

⎜
⎝
⎛ = νν

θπ
αλ 023 4

sin222
1

 () ()dsxCMeGiZds i
W

W
Z

F
i 50

2
2 1

sin
cos

22
γγ

θ
θ

π
λ μ −=

 () ()()dqqqsxDeGids i
F

i 5
2

02 1
82

γγ
π

λγ μμ −/−−=
 s d

 γ

 s d

 0Z

 ν s

 d

 ν

μ s

 μ

 d

Figure 36: Effective vertices for FCNC, idisi VV *=λ [12]

• FCNC term for s and d quarks in the FDQM Lagrangian: [17]

1
sin cos 2sd L LFCNC sd L sd L

W W

e s U d U s dμ μγ γ
θ θ
− ⎛ ⎞= ∝⎜ ⎟

⎝ ⎠
L

• Weak penguin effective vertex from above (top quark):

() ()

() LLtt

t
W

W
Z

F
ttop

dsxC

dsxCMeGiZds

μ

μ

γλ

γγ
θ
θ

π
λ

0

50
2

2 1
sin
cos

22
∝

−=

Because these two terms differ only in the constants out front, it is possible to modify any
result that includes ()tt xC0λ so that it also includes the FDQM contribution to FCNC.

• Modification to include FDQM in FCNC results:

() () sd
WF

tttt U
MG

xCxC 2

2
00

2
πλλ +→

This makes things much easier as many results have already been calculated by Buras
and given in term of the basic functions (()txB0 , ()txC0 , etc) that were calculated by
Inami and Lim. [28]

 80

One challenge in obtaining the above formula is the varying sign conventions and
constant definitions used in phenomenology literature. In particular, the above result for

sdFCNCL has a minus sign that is due to a different sign convention, while the vertex is

really iL . This is critical to understand in order to obtain the correct replacement. Even
considering this issue, papers by Buras and other authors quote a different formula.

• Commonly seen version of the standard FDQM replacement formula:

() () () *
2

2
02

2
00

22
sd

WF
ttds

WF
tttt U

MG
xCU

MG
xCxC πλπλλ +=+→

This differs by a sign change in dsUIm . Because dsU is essentially an independent and
unknown quantity this difference has little effect except when comparing results between
authors, so we will use the more common version that has dsU .

Minus convention: μμμμ τ BYigWigD
2

'−⋅−∂=

Plus convention: μμμμ τ BYigWigD
2

'+⋅+∂=

Mixed convention: μμμμ τ BYigWigD
2

'2 +⋅−∂=

Uses
2
Y

 as shown above:
23
YIQ +=

Uses Y in place of
2
Y

: YIQ += 3

0>e : charge of particle Qe=

0<e : charge of particle QeeQ −==

Figure 37: Common places where sign conventions and constant definitions can differ

 81

The CKM program
The basis for this work is a FORTRAN program originally developed by Dr. Dennis
Silverman for doing chi-squared analysis of the CKM matrix in the FDQM. Fourteen
experiments are included in the computation of chi-squared for over 100 billion
combinations of angles and phases in the extended CKM matrix [25]. To combine the
chi-squared for Gaussian distributions with a Poisson distribution for a few events, we
must use a different formula and add eventsN2 degrees of freedom. [38]

• Chi-squared formula:

()
22

2
2

theoryexp

theoryexp xx

σσ
χ

+

−
=

• Chi-squared formula for ()ννπ ++ →KBr :

exp

theory
Br

Br
22 =χ

The output of the program is a series of chi-squared contour plots showing what regions
of various variables are allowed and not allowed. [25]

Four new K physics experiments were added to this program. Each one produces an
equation for the result and its sigma as a function of the angles and phases of the
extended CKM matrix. These equations are computed for each set of angles/phases and
added into the total chi-squared to contribute to the contour plots. Any dependencies not
included in the angles/phases are plugged in manually and their uncertainties become part
of the sigma function.

C Experiment #8: epsilon
C Some premultiplies
 ilamtrlamt = ilamt*rlamt
 ilamcrlamt = ilamc*rlamt
 rlamcilamt = rlamc*ilamt
 ilamcrlamc = ilamc*rlamc
 Q(8) = -43592.4*(ilamtrlamt)
 $ - 32.832*(ilamcrlamt+rlamcilamt)
 $ - 10.8379*(ilamcrlamc)
 S2_Q8 = 4.91393e7*((ilamtrlamt)**2)
 $ + 67462.2*ilamtrlamt*(rlamcilamt+ilamcrlamt)
 $ + 22266.1*ilamcrlamc*ilamtrlamt
 $ + 81.9506*(((rlamcilamt)**2)+((ilamcrlamt)**2))
 $ + 53.0295*ilamcrlamc*(rlamcilamt+ilamcrlamt)
 $ + 11.9803*((ilamcrlamc)**2)
 sum = sum + ((Q(8)-P(8))**2)/(abs(S2_Q8)+S(8)**2)
 if(sum.gt.default_value) goto 101
 count(8)=count(8)+1

Figure 38: Snippet of the FORTRAN code for the added K physics experiments

 82

Theory

Calculation of ε
We start from [14], equation 3.22, which gives ε in terms of 12M . We drop the 4

π

phase and ignore the second term in ε as negligible. Combining with equation 3.37 gives
an equation for ε in terms of basic functions. These basic functions can be found in [12],
equations 3.17 through 3.19.

• [14], equation 3.22:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

Δ
= 12

0

0
12

4
Re

Re
Im2Im

2
M

A
AM

M
e

K

iπ

ε

• [14], equation 3.37:

() () ()[]tctcttcc

WKKK
F

xxSxSxS

mmBFGM

,2
12

03
**

02
2*

01
2*

22
2

2
12 0

ηλληληλ

π

++

×=

• [12], equations 3.17 through 3.19:

()

()
() ()

() () () ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
−

−
−=

−
−

−

+−
=

=

2

2
0

3

3

2

32
0

0

12

ln3
14
3ln,

12

ln3

14

114

t

tt

t

t

c

t
ctc

t

tt

t

ttt
t

cc

x

xx
x

x
x
xxxxS

x

xx

x

xxxxS

xxS

• Our theoretical value for ε , SM (without the 4
π phase):

12Im
2

1 M
M K

SM Δ
=ε

This is the contribution due to box and double penguin 2=ΔS diagrams. Wherever you
have a double penguin, you can also get a double FCNC diagram in the FDQM. This
contribution is obtained from the second term of [17], equation 45, by replacing their

2
Kf with 22 KF .

 83

• [17], equation 45:

()
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+−

Δ
= 2*

3

2
Im~Im

sin412 ds
WK

KKKF UE
m

mBfG
θπ

αε

• Our theoretical value for ε , BSM (without the 4
π phase)

2
2

12 Im
6

Im
2

1
ds

K

KKKF

K
BSM U

m
mBFGM

M Δ
+

Δ
=ε

We use the following values with the errors added in quadrature.

• GeV15.025.1 ±=cm [15]

• GeV5165 ±=tm [14]

• 13.085.0 ±=KB [39]

• 20.038.11 ±=η [14]

• 01.057.02 ±=η [14]

• 04.047.03 ±=η [14]

We use the following values as exact.

• 2-5GeV10166.1 −×=FG [15]

• GeV1598.0=KF [15]

• GeV497672.00 =Km [15]

• GeV41.80=Wm [15]

• GeV10489.3 15−×=Δ KM [15]

The resulting formula for ε is a function of cλ , tλ , dsU , and their corresponding
uncertainties. This result is compared to an experimental value from [14], equation 3.39,

of () 310013.0280.2 −×± (dropping the common 4
π phase).

 84

Calculation of
ε
ε 'Re

We use [14], equation 5.5, to get ε
ε ' in terms of 'εF , and equations 5.16 through 5.18 to

express 'εF in terms of basic functions. [14], table 5 gives the coefficients needed; we

interpolate to determine the dependence of these on)4(
MS

Λ . When the NDR and HV

schemes give different results we take the average and use the difference as a σ2 error.
The basic functions used are from [12], equations 3.11 through 3.25, as needed.

• [14], equation 5.5:

'Im'
ελ

ε
ε Ft=

• [14], equations 5.16 through 5.18:

() () () ()tEtZtYtX xEPxZPxYPxXPPF 00000' ++++=ε

8
)8(

6
)8()0(RrRrrP iiii ++=

() ()

2
)2/1(

66
137

⎥
⎦

⎤
⎢
⎣

⎡
+

=
cdcs mmmm

MeVBR

() ()

2
)2/3(

88
137

⎥
⎦

⎤
⎢
⎣

⎡
+

=
cdcs mmmm

MeVBR

Here)(j
ir are the coefficients that depend on)4(

MS
Λ and the renormalization scheme

used.)2/1(
6B and)2/3(

8B are "bag parameters" determined from lattice QCD
simulations.

The form of equation 5.16 above includes an implicit approximation that ε
ε ' is real. We

will therefore write this explicitly.

• Our theoretical value for ε
ε 'Re , SM:

'Im'Re ελ
ε
ε Ft

SM
=

 85

Table 6:
)(j

ir coefficient dependence on
)4(

MS
Λ [14]

To add the BSM contribution we use the standard replacement on the 0C inside the
gauge-independent basic functions 0X , 0Y , and 0Z .

• Buras [12], equations 3.23 through 3.28:

() () ()
()

() () ()
()

() () ()
()

() t
t

tttt

t

tttt
tttt

t
t

t

t

tt
ttt

t
t

t

t

tt
ttt

x
x

xxxx

x

xxxxxxDxCxZ

x
x

x
x
xxxBxCxY

x
x

x
x
xxxBxCxX

ln
172

18153832

1144

10825916318ln
9
1

4
1

ln
1

3
1
4

8

ln
1

63
1
2

8
4

4

234

3

234
000

2000

2000

−

+−−
+

−

−+−
+−=+=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
+

−
−

=−=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−

−
+

−
+

=−=

• Our theoretical value for ε
ε 'Re , BSM:

()zyxds
WF

t
BSM

PPPU
mG

F +++= Im
2

Im'Re 2

2
'

πλ
ε
ε

ε

 86

We use the following values with the errors added in quadrature.
• MeV27 ±=dm [14]

• MeV25130 ±=sm [14]

• GeV5165 ±=tm [14]

• 3.00.1)2/1(
6 ±=B [14]

• 2.08.0)2/3(
8 ±=B [14]

• GeV50340)4(±=Λ
MS

 [14]

•)(
0

ir (from table 3, also depends on)4(
MS

Λ)

We use the following values as exact.

•)(i
Xr ,)(i

Yr ,)(i
Zr ,)(i

Er (from table 3, still depend on)4(
MS

Λ)

• 2-5GeV10166.1 −×=FG [15]

• GeV41.80=Wm [15]

The resulting formula for ε
ε 'Re is a function of tλIm , dsUIm , and their

corresponding uncertainties. This result is compared to an experimental value from [29],
figure 11, of 00018.000172.0 ± .

 87

Calculation of ()ννπ ++ →KBr
We use [14], equation 6.7, for the branching ratio and add the isospin breaking correction
in equations 6.8 and 6.9. The NLX are interpolated from [13], table 1, for their cm and

)4(
MS

Λ dependencies. The basic functions used are from [12], equations 3.23 and 3.26, as

needed. The NLO corrections to the basic functions are from [14], equation 6.2.

• [14], equation 6.7 with isospin correction Kr :

()
() ()∑

=
++

++
+=

→

→

τμ
λλ

θπ

α

νπ
ννπ

,,

2

422

2

0 sin2 el
tt

l
NLc

Wus

K
K xXX

V
r

eKBr
KBr

• [12], equations 3.23 and 3.26:

() () ()
() ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡

−

−
+

−
+

=−= t
t

t

t

tt
ttt x

x
x

x
xxxBxCxX ln

1
63

1
2

8
4 2000

• [14], equation 6.2:

() () ()ttXt xXxXxX 00 994.0==η

Our theoretical value for ννπ ++ →K branching ratio, SM:

() ()
()∑

=

++++

+

×→=→

τμ
λλ

θπ

α

νπννπ

,,

2

422

2

0

sin2 el
tt

l
NLc

Wus

K
K

SM

xXX
V

r

eKBrKBr

Table 7: NLX dependence on cm and
)4(

MS
Λ [13]

 88

To add the BSM contribution we use the standard replacement on the 0C inside the
gauge-independent basic function 0X .

• Our theoretical value for ννπ ++ →K branching ratio, BSM:

() ()
()∑

=

++++

++

×→=→

τμ

πλλ
θπ

α

νπννπ

,,

2

2

2

422

2

0

2sin2 el
ds

WF
tt

l
NLc

Wus

K
K

BSM

U
mG

xXX
V

r

eKBrKBr

We use the following values with the errors added in quadrature.

• GeV15.025.1 ±=cm [15]

• GeV5165 ±=tm [14]

• GeV50340)4(±=Λ
MS

 [14]

• () 0006.00482.0exp
0 ±=→ ++ νπ eKBr [15]

We use the following values as exact.

• 129
1=Kα [14]

• 23124.0sin =Wθ [15]

• 2-5GeV10166.1 −×=FG [15]

• GeV41.80=Wm [15]

The resulting formula for the branching ratio is a function of cλ , tλ , usV , dsU , and
their corresponding uncertainties. This result is compared to an experimental value from

[32], below figure 6, of 10105.1 −× with a Poisson error.

 89

Calculation of ()SDLKBr −+→ μμ

We use [11], equations 7.71 through 7.74, for the branching ratio. The NLY are

interpolated from [13], table 3, for their cm and)4(
MS

Λ dependencies. The basic

functions used are from [12], equations 3.11 through 3.25, as needed. The NLO
corrections to the basic functions are from [13], equation 19.

• [11], equations 7.71 through 7.74:

() ()[]

()
W

usK

K

K

ttNLc
us

SDL

V
KBr

xYY
V

KBr

L

θπ

α
τ

τ
νμκ

λλ
κ

μμ

μ

μ

42

82

2
10

sin

ReRe

+

++

−+

→=

+=→

• [12], equations 3.24 and 3.27:

() () ()
() ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
+

−
−

=−= t
t

t

t

tt
ttt x

x

x
x
xxxBxCxY ln

1

3
1
4

8 2000

• [13], equation 19:

() () ()ttYt xYxYxY 00 012.1==η

• Our theoretical value for −+→ μμLK branching ratio, SM:

() ()
()[]2

422

2
ReRe

sin
ttNLc

Wus

K

K

K

SML

xYY
V

KBrKBr

L λλ
θπ

α
τ

τ

νμμμ

+

×→=→

+

++−+

To add the BSM contribution we use the standard replacement on the 0C inside the
gauge-independent basic function 0Y .

• Our theoretical value for −+→ μμLK branching ratio, BSM:

() ()
()

2

2

2

422

2
Re

2
ReRe

sin ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
++

×→=→

+

++−+

ds
WF

ttNLc
Wus

K

K

K

BSML

U
mG

xYY
V

KBrKBr

L πλλ
θπ

α
τ

τ

νμμμ

 90

Table 8: NLY dependence on cm and
)4(

MS
Λ [13]

We use the following values with the errors added in quadrature.

• GeV15.025.1 ±=cm [15]

• GeV5165 ±=tm [14]

• GeV50340)4(±=Λ
MS

 [14]

• () 0018.06351.0exp ±=→ ++ νμKBr [15]

We use the following values as exact.

• s1017.5 8−×=
LKτ [15]

• s102386.1 8−×=+Kτ [15]

• 129
1=Kα [14]

• 23124.0sin =Wθ [15]

• 2-5GeV10166.1 −×=FG [15]

• GeV41.80=Wm [15]

The resulting formula for the branching ratio is a function of cλ , tλ , usV , dsU , and
their corresponding uncertainties. This result is compared to an experimental value of

() 51001.40 −×± . [39]

 91

Error analysis
Finding a nominal value isn't very difficult, although there are some complexities.
However, that value is meaningless without a corresponding uncertainty. In general,
errors can be computed in the traditional way for a function ()ixf of variables ix with
independent errors

ixσ .

• Uncertainty in a general function f of multiple independent variables:

() ∑ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

=
i

x
i

xf ii x
f

2
σσ

To make it easier to perform the computation and avoid mistakes, the algebra for
computing this σ can be automated using Mathematica. To do this, a temporary function
of a single variable is created for each ix . The square of the derivative of this function
times the corresponding sigma is added into a running total and returned as the result.

sigma[func_, arg_, sig_] :=
 Block[{ s, i, l, f, a },
 s = 0;
 For[i = 1, i <= Length[arg], i++,
 l = arg;
 f[x_] :=
 Block[{},
 l[[i]] = a;
 Apply[func, l] /. a->x];
 s += (f'[arg[[i]]] sig[[i]])^2];
 Sqrt[s]]

Figure 39: Mathematica code for the computation of errors

Some values must be computed by means other than a formula, in which case it is not
immediately possible to compute a σ function as above. For example, the Penguin Box
Expansion (PBE) coefficients are given in table 6. A linear interpolation is sufficient to

describe the dependence on)4(
MS

Λ . The renormalization scheme dependence would

largely be cancelled by similar dependence in)2/1(
6B and)2/3(

8B ; however, those
values are not well enough understood to separate that dependence from the overall errors

[14]. Instead, an average value is used for)(
0

jr with the difference between the two

schemes treated as)(
0

2 jrσ .

 92

Results

Confidence plots
The final output from the FORTRAN program is a series of confidence plots for various
variables. Of particular interest for the K physics experiments are the ηρ − plots. Of
the four experiments added here, only the ε experiment helps constrain the ηρ − plot
in the Standard Model so the remaining experiments are best left out.

Figure 40: Plot of ρ vs. η in the Standard Model, including K physics experiments [25]

ε
ε '

−+→ μμLK

cdcb

udub

VV

VV
*

*

ε
β2sin

ννπ ++ →K smΔ

dx

Figure 41: Part of same plot showing which experiments correspond to which lines

 93

The situation is different in the FDQM because many of the standard experiments no
longer provide the same constraints. For the ηρ − plot, the annulus defined by the

cdcb

udub
VV
VV

*

*
 constraint is restricted to the upper half (0>η) by ννπ ++ →K and ε .

The phase angle in the ηρ − plane (13δ) is not otherwise constrained, although a more
precise value of α2sin could lock down the value of η .

Figure 42: Plot of ρ vs. η in the FDQM [25]

 94

 (a) (b)

(c)

Figure 43: Plot of ρ vs. η in the FDQM for (a) 12sin −=α , (b) 02sin =α , (c) 12sin =α [25]

Along with the wider range of 13δ in the FDQM, the value of ε can now have a BSM
contribution. While the contribution due to the FDQM can be as low as 0%, it can also be
as high as 60% at 1σ .

Figure 44: Plot of
expε

ε BSM vs. 13δ in the FDQM [25]

 95

Finally, we can look at the range of values allowed for *
dssd UU = . The value

0=sdU is allowed, which means the Standard Model cannot be excluded by current
experiments. The range of nonzero values for sdU doesn't tell us anything about the
likelihood of the FDQM being accurate though; as long as there is a nonzero difference
between the Standard Model and experiment we will see a potential for a nonzero value
of BSM quantities. Currently the error bars are close to 100% for many of the K physics
experiments, so the contribution to CP violation due to BSM physics can be equal to the
Standard Model contribution.

Figure 45: Plot of sdUIm vs. sdURe (in units of 410−) [25]

 96

Future work
Chi-squared analysis can never prove a theory, but it can be used to exclude theories and
to suggest areas where better experimental results are need. For example, we can see that
improved measurement of α2sin could be useful to restrict η . Such restrictions will
gradually edge out invalid theories and home in on the consistent ones.

We have also seen that the addition of new experiments, even ones with large error bars,

can be significant. In particular, the inclusion of ννπ ++ →K is very important in the
FDQM, although it provides too weak a constraint to be useful in the Standard Model. It
is important to consider this and look carefully at early results from new detectors to see
if they can be valuable even when the statistics are low.

The future of this analysis is largely dependent on future experimental advances. As new
results come in, the analysis can be extended and revised to look at the effects of each
experiment and suggest areas where improvement would be useful. In this way,
phenomenology acts as a feedback bridge connecting theoretical results back to
experimental effort and provides a measure for judging how well the two match.

 97

PART III

Appendices

 98

References
[1] ATLAS Collaboration: ATLAS Detector and Physics Performance Technical Design
Report, CERN/LHCC/99-14, 25 May 1999

[2] ATLAS Level-1 Trigger Group: ATLAS Level-1 Trigger Technical Design Report,
CERN/LHCC/98-14, 24 June 1998

[3] ATLAS Muon Collaboration: ATLAS Muon Spectrometer Technical Design Report,
CERN/LHCC/97-22, 5 June 1997

[4] ATLAS Website: http://atlas.ch/

[5] ATLAS Website: http://atlas.ch/atlas_photos/lhc/lhc.html

[6] ATLAS Website: http://atlasexperiment.org/etours_exper/etours_exper07.html

[7] ATLAS Website: http://atlasexperiment.org/atlas_photos.html

[8] Austern, Matthew: Generic Programming and the STL, Addison-Wesley, 1999

[9] Botella, F. J. and Chau, L.-L.: Anticipating the higher generations of quarks from
rephasing invariance of the mixing matrix, Phys. Lett. B168: 97, 27 February 1986

[10] Branco et al.: CP Violation, Oxford University Press, 1999

[11] Buras, Andrzej and Fleischer, Robert: Quark Mixing, CP Violation and Rare Decays
After the Top Quark Discovery, hep-ph/9704376, 22 April 1997

[12] Buras, Andrzej: Weak Hamiltonian, CP Violation and Rare Decays,
hep-ph/9806471, 24 June 1998

[13] Buras, Andrzej: The Rare Decays νπν→K , ννXB → , and −+→ llB : An
Update, hep-ph/9901288, 13 January 1999

[14] Buras, Andrzej: CP Violation and Rare Decays of K and B Mesons,
hep-ph/9905437, 21 May 1999

[15] Caso, C. et al.: The Review of Particle Physics, The European Physical Journal C3:
1, 1998

[16] CERN Website:
http://public.web.cern.ch/Public/Content/Chapters/AboutCERN/WhatIsCERN/WhatIsCE
RN-en.html

 99

[17] Choong, Woon-Seng and Silverman, Dennis: New phases in CP-violating B decay
asymmetries from mixing to singlet down quarks, Phys. Rev. D49: 2322, 1 March 1994

[18] Dailing, J. et al.: Off-Detector Electronics for a High-Rate CSC Detector,
PROCEEDINGS of the Sixth Workshop on Electronics for LHC Experiments, 11
September 2000

[19] Dailing, J. et al.: Performance and Radiation Tolerance of the ATLAS CSC
On-Chamber Electronics, PROCEEDINGS of the Sixth Workshop on Electronics for
LHC Experiments, 11 September 2000

[20] Drego, N. et al.: Off-Detector Electronics for High-Rate CSC Detector, IEEE
Transactions on Nuclear Science 51: 461, June 2004

[21] Fayyazuddin and Riazuddin, A Modern Introduction to Particle Physics, World
Scientific, 1992

[22] Gamma, Erich et al.: Design Patterns, Addison-Wesley, 1995

[23] GNU m4 website: http://www.gnu.org/software/m4/

[24] Gordeev, A. et al.: CSC Performance at High Background Rates,
ATL-MUON-2000-005, 19 October 1999

[25] Hawkins, Donovan and Silverman, Dennis: Isosinglet down quark mixing and CP
violation experiments, Phys. Rev. D66: 16008, 31 July 2002

[26] Hendriks, Patrick: ATLAS Muon Reconstruction from a C++ Perspective, Thesis:
Amsterdam Univ., 26 April 2000

[27] Hewett, J. L. and Rizzo, T. G.: Low-energy phenomenology of superstring-inspired
E6 models, Phys. Rept. 183: 193, November 1989

[28] Inami, Takeo and Lim, C. S.: Effects of Superheavy Quarks and Leptons in

Low-Energy Weak Processes μμ→LK , ννπ ++ →K , and 00 KK ↔ , Progress
of Theoretical Physics 65: 297, January 1981

[29] Kessler, R.: Recent KTeV Results, hep-ex/0110020, 19 October 2001

[30] LHC Website: http://lhc-machine-outreach.web.cern.ch/lhc-machine-outreach/lhc-
vital-statistics.htm

[31] LHC Website: http://sylvainw.home.cern.ch/sylvainw/planning-follow-
up/Schedule.pdf

 100

[32] Molzon, William: Quark Mixing Matrix Studies and Lepton Flavor Violation
Searches Using Rare Decays of Kaons, hep-ex/0001024, 11 January 2000

[33] Pier, Steve: IROD Architecture,
http://positron.ps.uci.edu/~pier/csc/IRODBlockDiagram9.pdf, 25 May 2001

[34] Press, William et al.: Numerical Recipes in C, Cambridge University Press, 1988

[35] Roe, Byron: Particle Physics at the New Millennium, Springer-Verlag, 1996

[36] Schernau, Michael: CSC Drift Time Summary,
http://positron.ps.uci.edu/~schernau/ROD/drift.ps, 1 March 2001

[37] Shin, M. et al.: Flavor changing neutral processes and 00
dd BB − mixing, Phys.

Lett. B219: 381, 16 March 1989

[38] Silverman, Dennis: Joint Bayesian Treatment of Poisson and Gaussian Experiments
in a Chi-squared Statistic, http://xxx.lanl.gov/pdf/physics/9808004, 26 June 2002

[39] Silverman, Dennis: Private correspondences, 2000

[40] STLPort Website: http://www.stlport.org/

[41] Texas Instruments, TMS320C6000 Code Generation Tools v4.10, run-time library
source code

[42] U.C. Irvine CSC ROD Group Website:
http://positron.ps.uci.edu/~schernau/ROD/pix/

[43] U.C. Irvine CSC ROD Group Website:
http://positron.ps.uci.edu/~schernau/ROD/SIT/results/rate/effi.html

 101

Appendix A: ATLAS Muon CSC ROD Software

DPU documentation for the HPU

Boot
Before the DPU is released from reset, make sure that address 0x80000000 is set to 0
using DPU Control. This signals the presence of the HPU to the DPU when it boots.
After boot, poll the same address looking for a non-zero value. This value will be the
address of the Status struct. All other memory addresses of interest will be located in the
Status struct. Verify that this value is a legal pointer in the range of DPU memory
available to the HPU.

At this point, only a few items are available to the HPU, all of which should be verified:

• All bools
Verify that the corresponding DDuummmmyyIInntteeggeerr is set to 0xB00? (Status.h).

•• SSttaattuuss..BBaassiicc..RReeaallHHPPUU
Verify that it is set to ttrruuee.

•• SSttaattuuss..BBaassiicc..RReeaallDDSSPP
Verify that it is set to ttrruuee.

•• SSttaattuuss..BBaassiicc..MMoodduullee
Verify that the module ID is in the range 0 to 11 inclusive.

•• SSttaattuuss..BBaassiicc..MMaajjoorrVVeerrssiioonn
Verify that it is set to DDPPUU__VVEERRSSIIOONN__MMAAJJOORR (common.h).

•• SSttaattuuss..BBaassiicc..MMiinnoorrVVeerrssiioonn
Verify that it is set to DDPPUU__VVEERRSSIIOONN__MMIINNOORR (common.h).

•• SSttaattuuss..BBaassiicc..BBoooottSSttaattuuss
Verify that it is set to TTSSttaattuuss::::bbssBBaassiicc (Status.h).

•• SSttaattuuss..BBaassiicc..IInniittiiaalliizzee
Verify that it is set to ffaallssee.

•• SSttaattuuss..BBaassiicc..CCaalliibbrraattiioonn
Verify that it is a legal pointer in the range of DPU memory available to the HPU.

•• SSttaattuuss..BBuuffffeerr..PPaarraammeetteerrAArrrraayy
Verify that it is a legal pointer in the range of DPU memory available to the HPU.

•• SSttaattuuss..BBuuffffeerr..PPaarraammeetteerrSSiizzee
Verify that it is a legal pointer in the range of DPU memory available to the HPU.

•• SSttaattuuss..BBuuffffeerr..RReessppoonnssee
Verify that it is a legal pointer in the range of DPU memory available to the HPU.

•• SSttaattuuss..BBuuffffeerr..CCIIBB
Verify that it is a legal pointer in the range of DPU memory available to the HPU.

 102

Initialization
Generally only the items in SSttaattuuss..BBaassiicc and the buffers whose pointers lie in
Status.Basic will be initialized. Those items are:

•• SSttaattuuss..BBaassiicc..IInniittiiaalliizzee
This item should be switched from ffaallssee to ttrruuee when all initialization is complete.

•• SSttaattuuss..BBaassiicc..BBiiggIInnppuutt

Setting this ttrruuee causes the DIB to use 1/2 of memory and the DOB to use 1/4.
Setting this ffaallssee reverses the situation. In ATLAS, we will use true.

•• SSttaattuuss..BBaassiicc..FFaassttIInnppuutt
Setting this ttrruuee causes the DIB to use a higher-priority DMA channel than the
DOB. Setting this ffaallssee reverses the situation. In ATLAS, we will use true.

•• SSttaattuuss..BBaassiicc..IInnppuuttBBuuffffeerr
This is an enum to specify the DIB input source. In ATLAS, we will use
TTSSttaattuuss::::bbttXXFFPPGGAA for the SPU and TTSSttaattuuss::::bbttEEFFPPGGAA for the RPU.

•• SSttaattuuss..BBaassiicc..OOuuttppuuttBBuuffffeerr
This uses the same enum as above to specify the DOB output destination. In
ATLAS, both the SPU and RPU will use TTSSttaattuuss::::bbttEEFFPPGGAA.

•• SSttaattuuss..BBaassiicc..OOuuttppuuttIInntteerrrruupptt
This option is not currently available and should be set to ffaallssee.

•• SSttaattuuss..BBaassiicc..EEFFPPGGAA__FFrraammeeSSiizzee
The EFPGA must be told what Frame size to use for DPU DMA input (DPU
acting as destination). If SSttaattuuss..BBaassiicc..IInnppuuttBBuuffffeerr is set to TTSSttaattuuss::::bbttEEFFPPGGAA then
the EFPGA is configured using the Policy subsystem's FFrraammeeSSiizzee. Otherwise the
value in this variable is used. A reasonable default is 16.

•• SSttaattuuss..BBaassiicc..DDXXMMooddee
This is an enum to specify whether we use loopback mode in the EFPGA. In
ATLAS, we will set this to TTSSttaattuuss::::ddxxNNoorrmmaall.

•• SSttaattuuss..BBaassiicc..VVeerrbboossee

Setting this ttrruuee enables pprriinnttff of diagnostic information by the DPU. This setting
has no meaning if the DPU was compiled with PPRRIINNTT ==OOFFFF (make.bat). In
ATLAS, we will set this to ffaallssee.

•• SSttaattuuss..BBaassiicc..CCoommmmaannddMMooddee
This is an enum to select whether the CIB will be fed Default Decode Commands
(used when the HPU is unable to send them). In ATLAS, we will set this to
TTSSttaattuuss::::ccmmHHPPUU.

•• SSttaattuuss..BBaassiicc..IInnppuuttDDaattaa
This is an enum that selects the Policy set to be used for the DIB. In ATLAS, we
will set this to TTSSttaattuuss::::iittTTiimmeesslliiccee for the SPU and TTSSttaattuuss::::iittSSppaarrssiiffiieeddDDaattaa for
the RPU.

 103

•• SSttaattuuss..BBaassiicc..DDeeffaauullttDDeeccooddeerr
This is an enum that selects which Decoder is the default. In ATLAS, we will set
this to DDaattaa::::DDPPUU__SSPPUUDDeeccooddeerr for the SPU and DDaattaa::::DDPPUU__RRPPUUDDeeccooddeerr for
the RPU (decoders.h).

•• SSttaattuuss..BBaassiicc..DDiissccaarrddDDeeccooddeerr
This is an enum that selects which Discard Decoder is used. In ATLAS, we will
set this to DDaattaa::::DDPPUU__SSPPUUDDiissccaarrddDDeeccooddeerr for the SPU and
DDaattaa::::DDPPUU__RRPPUUDDiissccaarrddDDeeccooddeerr for the RPU (decoders.h).

•• SSttaattuuss..BBaassiicc..OOuuttppuuttDDaattaa
This is an enum that selects the Policy set to be used for the DOB. In ATLAS, we
will set this to TTSSttaattuuss::::oottSSppaarrssiiffiieeddDDaattaa for the SPU and TTSSttaattuuss::::oottAATTLLAASSDDaattaa
for the RPU.

•• SSttaattuuss..BBaassiicc..PPrriimmeeIInnppuutt
This allows us to pre-fill the input buffers with data. In ATLAS, we will set this to
ffaallssee.

•• SSttaattuuss..BBaassiicc..MMaaxxIInntteerrrruuppttCCoouunntt
This option is not currently available and should be set to 0.

•• SSttaattuuss..BBaassiicc..MMaaxxCClloocckkWWaarrnniinngg
This is the number of clock cycles that a single pass through the main loop is
allowed to take before a Warning is issued. In ATLAS, we will set this to 10000.

•• SSttaattuuss..BBaassiicc..MMaaxxCClloocckkFFaauulltt
This is the number of clock cycles that a single pass through the main loop is
allowed to take before a Fault occurs.

•• SSttaattuuss..BBaassiicc..MMaaxxTTaasskkSSiizzee

This value determines the largest Task that may be created (in words). In ATLAS,
we will set this to 0xFFFFFFFF.

•• SSttaattuuss..BBaassiicc..OOppttiimmaallTTaasskkSSiizzee
This value sets the size of small memory chunks in the Scheduling System's Task
Heap (in words). This value will be rounded up to a power of two..

•• SSttaattuuss..BBaassiicc..TTiimmeeTTaasskkRReessoolluuttiioonn
This value sets the resolution of time-based Task scheduling (in microseconds).
The Scheduling System will activate a Task once the Task is within this amount
of time of the scheduled time, so this should be set larger than the largest expected
time for the main loop.

•• SSttaattuuss..BBaassiicc..PPrroommppttTTiimmeeTTaasskkss
Setting this ttrruuee will give time-based Tasks priority over Event-based ones. In
ATLAS, we will set this to ttrruuee.

 104

•• SSttaattuuss..BBaassiicc..OOvveerrrriiddee
Setting this ttrruuee enables override for mode values. Decoders must support this
feature or they will not be available. In ATLAS, we will set this to ffaallssee.

• All other mode overrides
These values are used to override the corresponding values in the Policy
subsystem. Even if SSttaattuuss..BBaassiicc..OOvveerrrriiddee is set ttrruuee, the individual values are not
overridden if they are set to 0 (or ttrrNNoonnee for OOuuttppuuttSSkkiippLLeennggtthh). In ATLAS, we
will set all these values to 0 (ttrrNNoonnee for OOuuttppuuttSSkkiippLLeennggtthh).

•• SSttaattuuss..BBaassiicc..EE__xx__YY__PPrriioorriittyy

This value allows fine control of the priorities of the Management System. In
ATLAS, we will set this to pprrEEmmppttyy.

•• SSttaattuuss..BBaassiicc..GG__xx__EE__PPrriioorriittyy
This value allows fine control of the priorities of the Management System. In
ATLAS, we will set this to pprrEEmmppttyy.

•• SSttaattuuss..BBaassiicc..GG__xx__GG__PPrriioorriittyy
This value allows fine control of the priorities of the Management System. In
ATLAS, we will set this to pprrEEmmppttyy.

•• SSttaattuuss..BBaassiicc..GG__xx__YY__PPrriioorriittyy
This value allows fine control of the priorities of the Management System. In
ATLAS, we will set this to pprrEEmmppttyy.

•• SSttaattuuss..BBaassiicc..OOrrddeerr

Order from the HPU. In ATLAS, we will set this to TTSSttaattuuss::::oorrNNoonnee.

•• SSttaattuuss..BBaassiicc..CCaalliibbrraattiioonn
This variable holds a pointer to the array used for Calibration and other Decoder
initialization (NOT the array itself). The exact details of what goes into this array
depend on the Decoder.

There are a couple items outside SSttaattuuss..BBaassiicc that may be optionally set:

•• SSttaattuuss..BBuuffffeerr..PPaarraammeetteerrAArrrraayy
This variable holds a pointer to the array of Parameter sets (NOT the array itself).
The Parameter sets can be written directly before a run to save time.

•• SSttaattuuss..BBuuffffeerr..PPaarraammeetteerrSSiizzee
This variable holds a pointer to the array of Parameter set sizes (NOT the array
itself). The Parameter set sizes can be written directly before a run to save time.

•• SSttaattuuss..BBuuffffeerr..CCIIBB

This variable holds a pointer to the CIB (NOT the buffer itself). Commands
CANNOT be written before the run is started.

After everything is set, SSttaattuuss..BBaassiicc..IInniittiiaalliizzee should be set to ttrruuee to begin a run. Note
that this may be done long before the actual run begins (especially useful if Tasks need to
be created and started). Wait until SSttaattuuss..BBaassiicc..BBoooottSSttaattuuss is equal to TTSSttaattuuss::::bbssNNoorrmmaall.

 105

Creating and using Parameter sets
Parameter sets are stored in the array pointed to by SSttaattuuss..BBuuffffeerr..PPaarraammeetteerrAArrrraayy, which
contains TTSSttaattuuss::::MMaaxxPPaarraammeetteerrSSiizzee times TTSSttaattuuss::::MMaaxxPPaarraammeetteerrCCoouunntt words. Each
Parameter set can hold up to TTSSttaattuuss::::MMaaxxPPaarraammeetteerrSSiizzee words, and there are
TTSSttaattuuss::::MMaaxxPPaarraammeetteerrCCoouunntt sets available. The first TTSSttaattuuss::::MMaaxxPPaarraammeetteerrSSiizzee words
are Parameter set 0, followed by the remaining Parameter sets in order.

There are two ways to fill a Parameter set from the HPU. The first is to write directly to
the appropriate words in the Parameter array. Once done, the corresponding word in
SSttaattuuss..BBuuffffeerr..PPaarraammeetteerrSSiizzee must be set to the number of words in the new Parameter set.
The second way is to send a Function Command with the Parameter set words attached.
The specified Parameter set will be filled with those words before the Function is
invoked.

On the DPU side, plug-ins will use GGeettPPaarraammeetteerr(()) and GGeettPPaarraammeetteerrSSiizzee(())
(Parameter.h) to access the Parameter sets.

 106

Sending Commands during a run
The CIB is a circular buffer that receives Commands via DPU Control. One curiosity is
that the CIB runs backwards in memory; this is necessary because DPU Control is only
able to write forwards. The beginning of the buffer is at the highest address, and the end
is at the lowest. A pointer to the lowest address is stored in SSttaattuuss..BBuuffffeerr..CCIIBB, and the
size (in words) is available as TTSSttaattuuss::::CCIIBBSSiizzee.

During IInniittiiaalliizzee(()) (triggered by setting SSttaattuuss..BBaassiicc..IInniittiiaalliizzee equal to ttrruuee), the DPU sets
the entire CIB to zero and starts polling the first word (highest address) for a non-zero
value. This word is the standard size word for a variable-length Packet. The size in the
size word specifies the total number of words in this Command (including the size word
itself); there is no padding because the FFrraammeeSSiizzee is 1. After (below) the Payload will be
the size word of the next Command; this must be set to zero BEFORE the first size word
is set non-zero to keep the DPU from reading past.

For space efficiency, the size word contains more than just the size. The lower halfword
contains the size, while the upper halfword is determined by the Command being issued.

The actual Payload of the Command is stored in the normal (forward) direction in
memory. This means that the lowest word just above the next size word is the first word
of the Command, and the last word of the Command will be at the highest address just
below the current size word.

Remaining Command wordsFree Space Size wordCommand
word 0

Command
word 1

Next
size word
(set to 0)

Command
word 2

Lowest address Highest address

Figure 46: Layout of Commands in CIB memory (begin at the right)

To send a command, the HPU should send the following in the forward direction:

• Zero (next size word)
• Command word 0
• Command word 1
• Command word 2
• (any other Command words in order)
• Size word (should overwrite the previous zero)

 107

When we get to the end (lowest address) of the buffer, something must be done to restart.
It is not permitted for a Command to wrap the buffer. If a Command exactly fills the
buffer, then the next Command can start at the beginning (highest address) with no
special action taken. If the new Command cannot fit, the value QQuueeuueeRReessttaarrtt (common.h)
must be written in the size word following the last Command and the new Command
goes at the beginning (highest address). Note that QQuueeuueeRReessttaarrtt must be written AFTER
the new Command is written, and that this will require two DPU Control writes.
Management of CIB memory to prevent overflow is the HPU's responsibility.

There are 5 types of Commands that can be written:

• Default Decode Command
This is a simple command to process N events using the default Decoder.

• Non-Default Decode Command

This is a slightly more complex Decode Command that can use any Decoder.

• Function Command
This Command invokes a Function and has several arguments

• Multi-Decode Command

This allows a different Decode Command to be sent to every DPU

• Multi-Function Command
This allows a different Function Command to be sent to every DPU

Multi Commands are the only way to send different Commands to different DPUs. DPUs
can only look at one Command per pass through the main loop and have no mechanism
to skip over Multi Commands that have only NOPs for them. A DPU could idle for many
passes popping off Commands that are not meant for it, so this should be avoided. It is
the HPUs responsibility to ensure DPUs are not delayed in receiving Decode Commands
too long or drown in Function Commands; the exact policy for this depends on the
Decoder used.

Three words are common to many Commands:

• Size word (Size word above)
Upper halfword: CIndex
Lower halfword: Size

• Command word (Command word 0 above)

Upper halfword: Type
Lower halfword: Command

• Param word (Command word 1 above)

Entire word: Param

 108

Default Decode Command:
o Size word

CIndex = number of Events to Default Decode
Size = 1

Free Space Size word
Next

size word
(set to 0)

Lowest address Highest address

Figure 47: Memory layout for Default Decode Command

Non-Default Decode Command:

o Size word
CIndex = number of Events to Decode
Size = 2

1. Command Word
Type = Decoder to use
Command = CCoommmmaanndd::::DDPPUU__DDeeccooddeeEEvveenntt (Command.h)

Free Space Size wordCommand
word

Next
size word
(set to 0)

Lowest address Highest address

Figure 48: Memory layout for Non-Default Decode Command

Function Command:

o Size word
CIndex = incrementing Function Command Index
Size = 3 + number of optional Parameter words

1. Command word
Type = Decoder to use
Command = Function to invoke

2. Param word
Param = Parameter set number to use

3. Beginning of optional Parameter words
Any additional words tells the DPU to copy these words to the Parameter set
specified in Param before invoking the Function

Free Space Size wordCommand
word Param word

Next
size word
(set to 0)

Lowest address Highest address

Optional Parameter words

Figure 49: Memory layout for Function Command

 109

Multi-Decode Command:
o Size word

CIndex = unused
Size = 2 + MMaaxxiimmuummDDPPUUCCoouunntt (common.h)

1. Command word
Type = unused
Command = CCoommmmaanndd::::DDPPUU__MMuullttiiDDeeccooddee (Command.h)

2. Decode words (one for each Module ID)
Upper halfword = Number of Events to Decode, or 0 for a NOP
Lower halfword = Decoder to use (0 for Default), or 0 for a NOP

Remaining Decode wordsFree Space Size wordCommand
word

Next
size word
(set to 0)

Lowest address Highest address

Decode
word 0

Figure 50: Memory layout for Multi-Decode Command

Multi-Function Command:

o Size word
CIndex = incrementing Function Command Index
Size = 2 + MMaaxxiimmuummDDPPUUCCoouunntt (common.h) + size of Commands

3. Command word
Type = unused
Command = CCoommmmaanndd::::DDPPUU__MMuullttiiCCoommmmaanndd (Command.h)

4. Offset words (one for each Module ID)
Upper halfword = offset to the actual Command word relative to the Command
word above, or 0 for a NOP
Lower halfword = size of the actual Command below (does not include a size
word), or 0 for a NOP

5. Specific Commands
Function Commands for individual DPUs (without size words)

Specific Commands
(no size words)Free Space Size wordCommand

word Offset words
Next

size word
(set to 0)

Lowest address Highest address

Figure 51: Memory layout for Multi-Function Command

 110

Sending Orders during a run
Orders are asynchronous Commands that are executed as soon as the DPU sees them.
Because of this, Orders violate all guarantees of stability and performance and should
never be used except during testing or to end a run.

To send an Order, first fill SSttaattuuss..BBaassiicc..PPaarraammeetteerr and SSttaattuuss..BBaassiicc..PPaarraammeetteerrSSiizzee as
appropriate for the Order being sent. Orders can be found in main.cpp in their own
section. Once the Parameter set is ready, set SSttaattuuss..BBaassiicc..OOrrddeerr to the desired value from
TTSSttaattuuss::::EEOOrrddeerr. Poll SSttaattuuss..BBaassiicc..OOrrddeerrRReessppoonnssee and read once the Reply word is non-
zero. Be sure to zero this Reply word before sending another Order.

To safely end a run using an Order, first wait until all Commands have received a
Response in the Response Buffer. Then send the Order TTSSttaattuuss::::oorrHHaalltt.

Using Tasks during a run
There are Functions that can interact with Tasks:

•• DDPPUU__TTaasskkCCrreeaatteeFFuunnccttiioonn
Set Type to the Task to be created. Param is unused
Returns a Task ID of the created Task in the Response

•• DDPPUU__TTaasskkIInniittiiaalliizzeeFFuunnccttiioonn

Set Type to the Task ID to be initialized. Param depends on the Task
Response depends on the Task

•• DDPPUU__TTaasskkSSiiggnnaallFFuunnccttiioonn

Set Type to the Task ID to be signaled. Param depends on the Task
Response depends on the Task

•• DDPPUU__TTaasskkOOuuttppuuttFFuunnccttiioonn

Set Type to the Task ID to be output. Param depends on the Task
Response depends on the Task

•• DDPPUU__TTaasskkTTeerrmmiinnaatteeFFuunnccttiioonn

Set Type to the Task ID to be terminated. Param depends on the Task
Response depends on the Task

•• DDPPUU__TTaasskkDDeessttrrooyyFFuunnccttiioonn

Set Type to the Task to be destroyed. Param is unused
Response contains no value

A Task must be created but need not be destroyed until just before the end of the run.
Before each use the Task should be initialized and then terminated when completed.
Output is used to request output (current Temperature average or histogram, for
example), while Signal can be used to send other messages to a Task.

 111

Reading Responses during a run
The TTRReessppoonnssee struct (common.h) is used to give a Response to a Decode or Function
Command when complete. It has two items:

• Reply word
Upper halfword: CIndex
Lower halfword: Reply

• Data[2] array

For a Decode Response, Reply will be rreeDDeeccooddee. CIndex will contain the least-
significant 16 bits of the Event Index, while DDaattaa[[00]] contains the size of the Event
being output (in words).

For a Function Response, Reply will be either rreeSSuucccceessss or one of the rreeFFaaiilluurree variants.
CIndex will contain the incrementing Function Command Index, while Data will vary
depending on the Command. For example, DDPPUU__TTaasskkCCrreeaatteeFFuunnccttiioonn will return the
created Task ID in DDaattaa[[00]].

The Response Buffer runs forward, and the entire Reply word will be zero in the next
Response if it is not ready yet. Do not use SSttaattuuss..BBuuffffeerr..RReessppoonnsseeIInnddeexx.

Reading Warnings during a run
The mask SSttaattuuss..BBaassiicc..WWaarrnniinnggss contains flags described in EEWWaarrnniinngg (common.h). To
clear these flags during a run, set the same flags in SSttaattuuss..BBaassiicc..WWaarrnniinnggssSSeeeenn and wait
until SSttaattuuss..BBaassiicc..WWaarrnniinnggssSSeeeenn is cleared. Do not set additional Warnings as seen until
this is cleared by the DPU.

Reading Faults during a run
If a Fault occurs, SSttaattuuss..BBaassiicc..FFaauullttCCoouunntt will be 1 (the first Fault will stop all operation
when running normally in ATLAS). Read SSttaattuuss..BBaassiicc..FFaauulltt[[00]] to get the file (upper
halfword) and code (lower halfword).

Reading Status during a run
Other values in the Status struct such as priorities or index/counters should not be used
for anything except debugging. The Response Buffer gives all the information that the
HPU needs to keep state with the DPUs. Using any other items introduces complex
timing and synchronization issues that may lead to incorrect values. These items exist in
the Status struct only to make them available to the entire DPU and for diagnostics.

 112

Setting up for a new run
When the run ends (caused by sending the oorrHHaalltt Order), SSttaattuuss..BBaassiicc..IInniittiiaalliizzee will be
set back to ffaallssee and SSttaattuuss..BBaassiicc..BBoooottSSttaattuuss will return to TTSSttaattuuss::::bbssBBaassiicc. To start a
new run, there are a few items to check before setting this back to true:

•• SSttaattuuss..BBaassiicc..OOrrddeerr
Set this to TTSSttaattuuss::::oorrNNoonnee.

•• SSttaattuuss..BBuuffffeerr..PPaarraammeetteerrAArrrraayy
If any Parameter sets were changed during the run, they can be set back to their
original values now.

•• SSttaattuuss..BBuuffffeerr..PPaarraammeetteerrSSiizzee
The corresponding sizes should also be adjusted.

 113

DPU documentation for the plug-in writer

Getting started
A plug-in generally consists of a single header file, though a source file may also be
needed. Both files must be assigned file numbers and added to the list of files in Fault.h
as follows:

DPU_FAULT_FILE(0x4309, "file.cpp")
DPU_FAULT_FILE(0x430A, "file.h")

Decoders are numbered 0x43??, Functions are numbered 0x53??, and Tasks are
numbered 0x63??. These numbers will be reported in the upper halfword of any Faults in
these files and must be unique.

The header file must also be added to the corresponding list of plug-in headers:

• Data\decoders\include.h
• Command\functions\include.h
• Scheduling\tasks\include.h

The line in the list of headers is a simple include with no path (the file should be located
in the same folder as include.h):

#include "file.h"

To register a plug-in, it must be added to the corresponding list of plug-ins:

• Data\decoders\decoders.h
• Command\functions\functions.h
• Scheduling\tasks\tasks.h

Details on the specifics of these registration macros are contained in the comments for
these files. More than one plug-in (of the same type only) can be in a single header file,
but each must be registered separately.

The source file must be added to the batch file MAKE.bat in order to be compiled. It
should be added to end of the OOPPTTIIOONNSS__FF33 line:

set OPTIONS_F3=Data\decoders\file.cpp

Any time the number 10,000 DSP clocks is mentioned as a limit, this refers to the total
Main Line processing time including UUppddaattee(()) and Management System overhead.

 114

Boilerplate
Header, top
// --
// Data\decoders\file.h My Decoders for a DPU, by John Smith
// --

// This file will be included specially, so no protection is needed

// Check file version number

#ifndef DPU_VERSION_1_40
 #error "Assertion Failed: Incorrect Data\\decoders\\file.h version"
#endif

// Include the C6x intrinsics

#include <c6x.h>

// Include the basic definitions used everywhere

#include "..\\..\\common.h"

// Include the HAL headers

#include "..\\..\\HAL\\Status.h"
#include "..\\..\\HAL\\Policy.h"
#include "..\\..\\HAL\\Queue.h"

// Include the Decoder header file

#include "..\\decoder.h"

// Set this file's number (must be after all includes)

#define DPU_FILE_NUMBER 0x430A

// This file adds to the DPU::Data::MyDecoder namespace

namespace DPU
{
 namespace Data
 {
 namespace MyDecoder
 {

 115

Header, bottom
// -----------
// Namespace
// -----------

// This file adds to the DPU::Data::MyDecoder namespace

 }
 }
}

// Clear this file's number

#undef DPU_FILE_NUMBER

Source, top
// --
// Data\decoders\file.cpp My Decoders for a DPU, by John Smith
// --

// Check file version number

#ifndef DPU_VERSION_1_40
 #error "Assertion Failed: Incorrect Data\\decoders\\file.cpp version"
#endif

// Include the basic definitions used everywhere

#include "..\\common.h"

// Include the corresponding header file

#include "file.h"

// Set this file's number (must be after all includes)

#define DPU_FILE_NUMBER 0x4309

// -----------
// Namespace
// -----------

// This file adds to the DPU::Data::MyDecoder namespace

namespace DPU
{
 namespace Data
 {
 namespace MyDecoder
 {

 116

Source, bottom
// -----------
// Namespace
// -----------

// This file adds to the DPU::Data namespace

 }
 }
}

This is boilerplate used in most DPU files. The exact headers to include vary, but most all
plug-ins will likely need Status.h and Policy.h to access the Status struct and Policy
namespaces. Queue.h is needed by all Decoders and some Tasks to access the DIB and
DOB. The file Decoder.h should be replaced with Command.h or Task.h as appropriate.

There is no special restriction on the namespace, but a unique namespace under the Data,
Command, or Scheduling namespace is appropriate for Decoders, Functions, and Tasks,
respectively.

The file version line must be updated whenever the DPU software version is changed.
There is a macro in the batch folder that does this automatically, so be sure to add any
new files to the list in batch\list.txt so that it is updated.

 117

Policy namespaces
As was discussed in the description of the Policy subsystem, plug-ins have the choice of
whether they use the constants for a specific mode or whether they use the variables for
the current mode. Using the constants is more limiting but it allows for maximum
performance.

To isolate this decision from the code, plug-ins (especially Decoders) should create their
own local namespace and bring the appropriate constants or variables in with using
statements. For example:

// -------------------
// Policy namespaces
// -------------------

// Namespace used for my special timeslices

namespace PolicyTimeslice
{
 using Policy::Public::InputEventLength
 using Policy::Private::InputMyTimeslice::InputFrameSize;
}

In this case, we are using the public (run-time) version of EEvveennttLLeennggtthh and the private
(mode-specific constant) of FFrraammeeSSiizzee for input. To support this, we need to check this in
CCaannIInniittiiaalliizzee(()):

bool CanInitialize()
{
 if (Policy::Public::InputEventLength !=
 PolicyTimeslice::InputEventLength) return false;
 if (Policy::Public::InputEventLength !=
 Policy::Public::OutputEventLength) return false;
 if (Policy::Public::InputMaxPacketLength != 1) return false;
 if (Policy::Public::OutputMaxPacketLength != 1) return false;
 if (Policy::Public::InputFrameSize !=
 PolicyTimeslice::InputFrameSize) return false;
 if (Policy::Public::InputFrameSize !=
 PolicyTimeslice::OutputFrameSize) return false;
 return ((Status.Basic.InputData == TStatus::itMyTimeslice) &&
 (Status.Basic.OutputData == TStatus::otMyTimeslice));
}

The first check makes sure that the current mode uses the same IInnppuuttEEvveennttLLeennggtthh that we
are using. The second check makes sure that both output and input use the same
EEvveennttLLeennggtthh (useful for Decoders that copy input to output...otherwise output will
generally be in the local Policy namespace as well). The third and fourth checks look for
fixed-length input and output, which is simpler to test against 1 rather than bringing
MMaaxxPPaacckkeettLLeennggtthh into the local Policy namespace. The fifth and sixth checks do the
same thing for IInnppuuttFFrraammeeSSiizzee that the first and second do for IInnppuuttEEvveennttLLeennggtthh. Finally,
the last check makes sure the basic data types match what we expect.

 118

With these tests, we can handle overrides as long as IInnppuuttFFrraammeeSSiizzee and
OOuuttppuuttFFrraammeeSSiizzee don't change and both input and output remain fixed-length. If we
wanted to change the Decoder (or cut/paste a new version) to use any FFrraammeeSSiizzee or to
bind to a constant EEvveennttLLeennggtthh, we only have to touch the local Policy namespace; all the
tests in CCaannIInniittiiaalliizzee(()) are fine.

There is one very important warning:

DO NOT ATTEMPT TO UUSSIINNGG THE LOCAL POLICY NAMESPACE!

The following code will NOT work:

namespace PolicyTimeslice
{
 using Policy::Public::InputEventLength
 using Policy::Private::InputMyTimeslice::InputFrameSize;
}

using namespace PolicyTimeslice;

This seems like a clever shortcut, but the namespace lookup rules for C++ cause this to
fail miserably. Always be explicit and write it out, such as writing
PPoolliiccyyTTiimmeesslliiccee::::IInnppuuttFFrraammeeSSiizzee in the case above.

 119

Faults and asserts
All files should use the macro functions FFaauulltt(()) and aasssseerrtt(()) to report errors (common.h).
FFaauulltt(()) checks remain in the final system, while aasssseerrtt(()) checks exist only in debug
mode. It is important that any time-consuming checks use aasssseerrtt(()) to preserve
performance.

A call to FFaauulltt(()) with a unique Fault code for the file produces a Fault, so the check
should be done in a conditional. aasssseerrtt(()) works the same way as a standard C++ aasssseerrtt(())
macro. When a FFaauulltt(()) or failed aasssseerrtt(()) occurs, the system stops processing and enters
an infinite loop doing nothing. This allows for debugging using the HPU or emulator.

A Fault is reported in Status.Basic.Fault[0] with the file code in the upper halfword and
the Fault code in the lower halfword. An assert is reported the same way, but the Fault
code will have the high bit set and the remaining bits will be the line number for the
assert. All Faults should be entered into fault.h but asserts are not. The entries in fault.h
should appear directly below the file's entry and include the function/method that invoked
a Fault and a brief message:

DPU_FAULT_CODE(0x0001, "Execute, Multi-command too small")
DPU_FAULT_CODE(0x0002, "Execute, Command Index was out of sequence")
DPU_FAULT_CODE(0x0003, "Execute, Function out of range")

Because of the nature of the separation between the DPU software framework and the
individual plug-ins, it should not be necessary to perform any special testing of the
framework when new plug-ins are added. Normal testing of the plug-ins, as designed by
the plug-in creator, should be sufficient. These would typically involve using the plug-in
for a large period of time in both typical and atypical conditions. All asserts should be
enabled during this or any other testing (except performance testing).

 120

Decoders
Decoders are derived from the base class TTDDeeccooddeerr and overload the virtual functions
CCaannIInniittiiaalliizzee(()), IInniittiiaalliizzee(()), EExxeeccuuttee(()), and TTeerrmmiinnaattee(()). CCaannIInniittiiaalliizzee(()) shall return true if
and only if the Decoder works in the current mode. IInniittiiaalliizzee(()) and TTeerrmmiinnaattee(()) are
invoked only if CCaannIInniittiiaalliizzee(()) returned true, and EExxeeccuuttee(()) is invoked to process one
Event. If EExxeeccuuttee(()) can't complete the necessary processing in 10,000 DSP clock cycles,
it should return without popping and continue during the next invocation.

Below is our sample Decoder that copies input to output:

// ---------------
// My Timeslices
// ---------------

// Decoder that takes fixed-length timeslices and copies to output
// Override: Supported for EventLength
// Needs InputFrameSize == OutputFrameSize
// and InputEventLength == OutputEventLength

class TMyTimesliceDecoder : public TDecoder
{
 public:

// CanInitialize virtual function

...same as the example in the Policy namespaces section...

// Initialize virtual function

void Initialize()
{
 // Return
 return;
}

// Terminate virtual function

void Terminate()
{
 // Return
 return;
}

 121

// Execute virtual function

void Execute()
{
 // Get the event
 const Queue::TPacket* event = Queue::DIB.front();

 // Copy the event to output and push it on
 for (uint i = 0; i < PolicyTimeslice::InputEventLength; ++i)
 {
 uint* dest = Queue::DOB.back();
 assert(dest);
 FastCopy< uint >(event[i].Payload, dest,
 PolicyTimeslice::InputFrameSize);
 Queue::DOB.push_fixed(Status.Processing.EventIndex);
 }

 // Pop off the event
 Queue::DIB.pop(PolicyRaw::InputEventLength);

 // Increment the EventIndex/EventCounter
 ++volatile_value(Status.Processing.EventIndex);
 if (!Status.Processing.EventIndex)
 ++volatile_value(Status.Processing.EventCounter);

 // Return
 return;
}

};

The call to DDIIBB..ffrroonntt(()) returns an array of TTPPaacckkeett, each of which contains the members
SSiizzee and PPaayyllooaadd for one Packet. SSiizzee contains the number of words in Payload, while
PPaayyllooaadd contains the data for the Packet. Since we are only using fixed-length Packets
here, we don't bother to check the redundant size information. If we were using a
variable-length format that placed information in the upper halfword of the size word, we
would need to mask before checking the size.

A call to DDOOBB..bbaacckk(()) returns a pointer where the next output Packet should be written.
This output is finished when DDOOBB..ppuusshh__ffiixxeedd(()) or DDOOBB..ppuusshh__vvaarriiaabbllee(()) (Queue.h) is
called as appropriate to the data type, at which point DDOOBB..bbaacckk(()) will return the pointer
for the next Packet to be output.

After all the copying done, DDIIBB..ppoopp(()) is called with the number of Packets to be
removed. If some Packets are shared between Events, this number may be less than the
EEvveennttLLeennggtthh. EEvveennttIInnddeexx and EEvveennttCCoouunntteerr should also be incremented, but be sure to
use the old value of EEvveennttIInnddeexx in any calls to DDOOBB..ppuusshh__ffiixxeedd(()) or
DDOOBB..ppuusshh__vvaarriiaabbllee(()).

FFaassttCCooppyy(()) is a template function in common.h that should be used for any large blocks
of copies for optimal performance. If the source or destination needs to skip over
intervening values, the alternative FFaassttCCooppyySSttrriiddee(()) is available.

 122

Functions
Functions are derived from the base class TTFFuunnccttiioonn and overload the virtual functions
CCaannIInniittiiaalliizzee(()), IInniittiiaalliizzee(()), EExxeeccuuttee(()), and TTeerrmmiinnaattee(()). CCaannIInniittiiaalliizzee(()) shall return true if
and only if the Function works in the current mode. IInniittiiaalliizzee(()) and TTeerrmmiinnaattee(()) are
invoked only if CCaannIInniittiiaalliizzee(()) returned true, and EExxeeccuuttee(()) is invoked to perform the
Command. If EExxeeccuuttee(()) can't complete the necessary processing in 10,000 DSP clock
cycles, it should return without popping and continue during the next invocation.

Below is a sample Function that returns the last Decoder used by the DPU. Since this is
only going to be used in diagnostics, we will simply return the value sitting in
NNeexxttDDeeccooddeerr (Command.h). This isn't entirely valid (such as when the run has just
started), but will normally give what was the next Decoder before this Command was
executed. To be a little safer, we will return failure if EEvveennttIInnddeexx is 0 since NNeexxttDDeeccooddeerr
hasn't been written to yet:

// ---------------------------
// Previous Decoder Function
// ---------------------------

// Function that returns the value of NextDecoder

class TDummyFunction : public TFunction
{
 public:

// CanInitialize virtual function

bool CanInitialize()
{
 return true;
}

// Initialize virtual function

void Initialize()
{
 // Return
 return;
}

// Terminate virtual function

void Terminate()
{
 // Return
 return;
}

 123

// Execute virtual function

void Execute(uint CIndex, uint Type, uint Parameter)
// Type and Parameter are unused
{
 // Respond with success and give the NextDecoder value
 // unless we haven't had an Event yet
 if (Status.Processing.EventIndex || Status.Processing.EventCount)
 {
 Queue::Respond(reSuccess, CIndex, NextDecoder);
 }
 else
 {
 Queue::Respond(reFailure, CIndex);
 }

 // Pop off the command
 Queue::CIB.pop(1);

 // Return
 return;
}

};

CCaannIInniittiiaalliizzee(()) is trivial in this case since this function works in any mode. The primary
responsibility of EExxeeccuuttee(()) is to give a Response and pop the Command out of the CIB.
The extra two values to RReessppoonndd(()) are optional and their meanings depend on the context.
In our case, DDaattaa[[00]] (the first of the two values) is the value of NNeexxttDDeeccooddeerr and
DDaattaa[[11]] (the second value) is unused. When the Function fails, the values have no
meaning.

In this simple case, the value being returned was available simply by including
Command.h, but this is not generally the case. Extra effort may be needed to access
protected data in classes where no provision was made to read from the outside.

 124

Tasks
Tasks are derived from the base class TTTTaasskk and overload the virtual functions
CCaannIInniittiiaalliizzee(()), IInniittiiaalliizzee(()), SSiiggnnaall(()), OOuuttppuutt(()), TTeerrmmiinnaattee(()), CCaappttuurree(()), and SSeerrvviiccee(()).
CCaannIInniittiiaalliizzee(()) shall return true if and only if the Task works in the current mode.
IInniittiiaalliizzee(()) and TTeerrmmiinnaattee(()) are invoked only if CCaannIInniittiiaalliizzee(()) returned true.

Tasks are able to schedule their CCaappttuurree(()) or SSeerrvviiccee(()) functions (one at a time, not both)
to activate in a certain amount of time or on a certain Event number. CCaappttuurree(()) will not
be activated early, but SSeerrvviiccee(()) can take place any time up to the specified limit. The
intention is for CCaappttuurree(()) to quickly grab a copy of relevant, time-sensitive data and
SSeerrvviiccee(()) to perform any complicated processing. This is critically important because
multiple Tasks could coincidentally schedule their CCaappttuurree(()) at the same time. Moving
work from CCaappttuurree(()) to SSeerrvviiccee(()) increases the likelihood that all CCaappttuurree(()) requests can
be completed before the system is forced to move back to processing Events. If SSeerrvviiccee(())
can't complete the necessary processing in 10,000 DSP clock cycles, it should schedule
another SSeerrvviiccee(()) and continue during the next invocation. Scheduling an additional
CCaappttuurree(()) is possible for Event-based Tasks (not time-based) but is not recommended.

Below is a sample Task that monitors the temperature reported by the EFPGA:

// ------------------
// Temperature Task
// ------------------

// Task records at a non-zero time-based interval, runs until stopped
// Initialize with Parameter = interval (in microseconds)
// Output needs no parameter, single TAverage returned by pointer
// Terminate needs no parameter, single TAverage returned by pointer

class TTemperatureTask : public TTask
{
 protected:

// Schedule interval (in microseconds) (set to zero to indicate a
missed Capture scheduling)

uint Interval;

// Next scheduled time (in microseconds)

uint NextTime;

// Accumulating average

TAverage Average;

// Average used for HPU communication

TAverage OutputAverage;

 125

 public:

// CanInitialize static function

static bool CanInitialize()
{
 return true;
}

// Initialize virtual function

void Initialize(uint CIndex, uint Parameter)
{
 // Running
 Running = true;

 // Store interval and next time
 Interval = Parameter;
 NextTime = Status.Processing.TimeIndex;
 if (!Interval)
 {
 Queue::Respond(reFailureParameter, CIndex);
 return;
 }

 // Zero average
 Average.CountLSW = 0;
 Average.CountMSW = 0;
 Average.SumLSW = 0;
 Average.SumMSW = 0;
 Average.Minimum = 0xFFFFFFFF;
 Average.Maximum = 0;

 // Schedule and Respond
 NextTime += Interval;
 if (RequestTimeCapture(this, NextTime))
 Queue::Respond(reSuccess, CIndex);
 else
 Queue::Respond(reFailureResource, CIndex);

 // Return
 return;
}

// Terminate virtual function

void Terminate(uint CIndex, uint Parameter)
{
 assert(Running);
 TTemperatureTask::Output(CIndex, Parameter);
 Running = false;
}

// Signal virtual function

void Signal(uint CIndex, uint Parameter)
{
 // Not supported
 Queue::Respond(reFailureSupport, CIndex);
 return;
}

 126

// Output virtual function

void Output(uint CIndex, uint Parameter)
{
 // Check for previous inability to schedule
 assert(Running);
 if (!Interval)
 {
 Queue::Respond(reFailureResource, CIndex);
 return;
 }

 // Copy for HPU
 volatile_value(OutputAverage.CountLSW) = Average.CountLSW ;
 volatile_value(OutputAverage.CountMSW) = Average.CountMSW;
 volatile_value(OutputAverage.SumLSW) = Average.SumLSW;
 volatile_value(OutputAverage.SumMSW) = Average.SumMSW;
 volatile_value(OutputAverage.Minimum) = Average.Minimum;
 volatile_value(OutputAverage.Maximum) = Average.Maximum;

 // Respond and return
 Queue::Respond(reSuccess, CIndex, 1, &OutputAverage);
 return;
}

// Capture virtual function

void Capture()
{
 // Must not have missed a Capture scheduling
 assert(Interval);

 // Stop now without reschedule if not running
 if (!Running) return;

 // Get the new temperature
 int temp = FPGA::EFPGAGetTemp();

 // Update Count
 ++Average.CountLSW;
 if (!Average.CountLSW) ++Average.CountMSW; // LSW roll-over

 // Update Sum
 Average.SumLSW += temp;
 if (temp > Average.SumLSW) ++Average.SumMSW; // LSW roll-over

 // Update min/max
 if (temp < Average.Minimum) Average.Minimum = temp;
 if (temp > Average.Maximum) Average.Maximum = temp;

 // Schedule
 NextTime += Interval;
 if (!RequestTimeCapture(this, NextTime)) Interval = 0;

 // Return
 return;
}

 127

// Service virtual function

void Service()
{
 // Not used
 Fault(0x0002); // Service requested
}

};

All Tasks should use the RRuunnnniinngg bool in the TTTTaasskk base class to keep track of their state.
Scheduling for CCaappttuurree(()) is done by calling the static function
TTTTaasskk::::RReeqquueessttTTiimmeeCCaappttuurree(()); similar functions exist for Event-based operations and
SSeerrvviiccee(()) requests. Because the processing is so trivial in this case, we do it in CCaappttuurree(())
rather than SSeerrvviiccee(()).

Because there is no mechanism to get back into the CCaappttuurree(())/SSeerrvviiccee(()) queue (besides
custom support in SSiiggnnaall(())), most Tasks will remain constantly in one of the two queues.
When a Task is terminated, setting RRuunnnniinngg to ffaallssee can be used to inform the next
CCaappttuurree(()) or SSeerrvviiccee(()) not to proceed.

If a problem occurs during CCaappttuurree(()) or SSeerrvviiccee(()), a flag should be set so the problem can
be reported to the HPU during the next OOuuttppuutt(()), SSiiggnnaall(()), or TTeerrmmiinnaattee(()). The problem
cannot be reported immediately because the HPU is not expecting a Response from
CCaappttuurree(()) or SSeerrvviiccee(()).

 128

Software source code
A complete copy of the source code can be found at http://www.cephira.com/thesis/.

 129

Appendix B: K Physics in the FDQM

Software source code
A complete copy of the source code can be found at http://www.cephira.com/thesis/.

	DEDICATION
	 List of Tables
	 List of Figures
	 Acknowledgements
	 Curriculum Vitae
	Donovan Lee Hawkins

	 Abstract of the Dissertation
	 Motivation
	Introduction/Summary of Results
	 Higgs Physics
	Introduction

	 Examination of Channels Used for Higgs

	 Detector
	Description of CERN and the LHC
	LHC Specifications: [30]

	 Description of ATLAS and the Muon Subsystem
	ATLAS
	Muon System
	Muon CSC

	 Trigger/DAQ Chain and the Role of the ROD
	 The ATLAS CSC ROD and GPUs
	GPU, HPU, DPU, SPU, RPU

	 Design
	SPU vs. RPU
	 Events and data flow in the ROD
	Events
	MaxPacketLength

	Queues
	 Data flow

	 Requirements
	 The HPU-DPU relationship
	 The DPU software framework
	 Management System
	 Data System
	Command System
	Scheduling System
	 Priorities
	 Hardware Abstraction Layer (HAL)
	Drivers

	 Policies and design rules for the software

	 SPU
	Sparsification algorithm
	 Sparsified data format
	Events
	Common header
	SPU status header
	Status words
	 Data
	Cluster
	Cluster words
	 Bitmap words
	Sample words
	Ghost words

	 Implementation
	OOTEliminate assembly function
	MarkNeighbors assembly function
	ParseBitmap assembly function
	 FindPeak assembly function
	CalculateTime assembly function
	CutTime assembly function
	AddBitmap assembly function
	LinkList assembly function
	 OutputResults assembly function
	C++

	 Calibration array

	 RPU
	Neutron rejection algorithm
	 Neutron-rejected data format
	Events
	Common header
	Data
	 Cluster
	Cluster words
	Sample words
	 RPU status header
	SPU status header
	Status words
	Ghost words

	 Implementation
	NeutronReject assembly function

	 Calibration array

	 Implementation
	File Layout
	Base Files
	Driver Files
	DMA.h/.cpp
	FPGA.h/.cpp
	Timer.h/.cpp
	Platform.h

	Hardware Abstraction Layer (HAL) Files
	Status.h
	Policy.h
	Parameter.h
	Response.h
	Queue.h
	PriorityQueue.h
	Heap.h
	HAL.cpp
	Util.h/.cpp
	HALControl.h/.cpp
	 Policy\policies.h
	Policy\include.h
	Policy\dt_input.h
	Policy\dt_output.h
	Queue\input.h
	Queue\input.cpp
	Queue\output.h
	Queue\output.cpp

	Data System Files
	DataControl.h/.cpp
	Data.h/.cpp
	decoders\SPU.h
	decoders\RPU.h
	decoders\Timeslice.h
	decoders\SIT.h
	decoders\Beamtest.h
	decoders\DXTest.h

	Command System Files
	CommandControl.h/.cpp
	Command.h/.cpp

	Scheduling System Files
	SchedulingControl.h/.cpp
	Scheduling.h/.cpp

	HPU Files
	Data\decoders\decoders.h
	Scheduling\tasks\tasks.h

	 Status Structure
	Basic Section
	Processing Section
	Buffer Section

	 Policy System
	Input
	Output

	 Input/Output Queues
	 Task Priority Queues
	Priority Queues
	Standard Template Library
	Custom Priority Queue

	 Task Heap

	 Testing
	Real data, realistic data, and arbitrary data
	 Testing vs. design for performance
	 Faults and Warnings
	 Accuracy testing
	General
	 SPU
	RPU

	 Performance testing

	 Conclusion
	Summary
	 Future work

	 Motivation
	Introduction
	 CP violation theory in the K system
	 FCNC in the Standard Model and beyond
	 The CKM program

	 Theory
	Calculation of
	 Calculation of
	 Calculation of
	 Calculation of
	 Error analysis

	 Results
	Confidence plots
	 Future work

	 References
	 Appendix A: ATLAS Muon CSC ROD Software
	DPU documentation for the HPU
	Boot
	 Initialization
	 Creating and using Parameter sets
	 Sending Commands during a run
	 Sending Orders during a run
	Using Tasks during a run
	 Reading Responses during a run
	Reading Warnings during a run
	Reading Faults during a run
	Reading Status during a run
	 Setting up for a new run

	 DPU documentation for the plug-in writer
	Getting started
	 Boilerplate
	 Policy namespaces
	 Faults and asserts
	 Decoders
	 Functions
	 Tasks

	 Software source code

	 Appendix B: K Physics in the FDQM
	Software source code

