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Abstract of the Dissertation 
 

ATLAS Particle Detector CSC ROD Software Design and Implementation 
 

And 
 

Addition of K Physics to Chi-Squared Analysis of FDQM 
 

By 
 

Donovan Lee Hawkins 
 

Doctor of Philosophy in Physics 
 

University of California, Irvine, 2005 
 

Professor Andrew Lankford, Chair 
 
 
In this thesis I present a software framework for use on the ATLAS muon CSC readout 

driver. This C++ framework uses plug-in Decoders incorporating hand-optimized 

assembly language routines to perform sparsification and data formatting. The software is 

designed with both flexibility and performance in mind, and runs on a custom 9U VME 

board using Texas Instruments TMS360C6203 digital signal processors. I describe the 

requirements of the software, the methods used in its design, and the results of testing the 

software with simulated data. 

 
I also present modifications to a chi-squared analysis of the Standard Model and Four 

Down Quark Model (FDQM) originally done by Dr. Dennis Silverman. The addition of 

four new experiments to the analysis has little effect on the Standard Model but provides 

important new restrictions on the FDQM. The method used to incorporate these new 

experiments is presented, and the consequences of their addition are reviewed. 
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PART I 
 

ATLAS Muon CSC ROD Software 
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Motivation 

Introduction/Summary of Results 
The primary goal of a particle detector is to provide the information necessary to 
reconstruct what occurred during a collision. Particles must be identified, their momenta 
determined, and a quick decision made whether to record the data for offline analysis. 
Specialized hardware and software is needed to digitize and process the signals from 
detectors and pass them on for analysis and storage. In the ATLAS particle detector, the 
first tier of this process is the readout driver (ROD). These are custom boards that convert 
data for different detector subsystems into a common format. The RODs allow the 
remainder of the data processing chain to be designed independently of the design of the 
individual detector subsystems. 
 
Only a tiny fraction of a percent of the collisions will be saved in ATLAS. In the muon 
CSC subsystem, the ROD is responsible for a significant amount of data reduction by 
suppressing channels containing only noise and eliminating data that comes from times 
other than the trigger of interest. This requires a significant amount of data processing 
power to apply this reduction at the 100kHz design trigger rate. By using high-speed 
digital signal processor (DSP) chips, we can achieve both high performance and a high 
degree of flexibility when compared to a traditional FPGA design. In fact, the resulting 
system has turned out to be flexible enough to handle a number of unexpected data 
formats used during testing without modification of the core software framework. This 
fact has both leveraged the effort put into this system and provided an early test bed for 
exercising the software and confirming its proper operation. 
 
Currently the software has reached a level of performance necessary to complete all of 
the processing required in ATLAS, and has been tested to ensure proper operation 
without errors. Further testing on the algorithms and implementation using Monte Carlo 
studies is needed to confirm earlier predictions on the rejection and acceptance rates. 
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Higgs Physics 

Introduction 
We begin with a brief examination of the connection between phase and the 
electromagnetic field. This is NOT a calculation (the canonical replacement should be 
done before solving) but it is still illuminating. 
 

• Classical gauge transformation (4-vector notation): 
( )xAA Λ∂+→ μμμ  

 
• Plane-wave solution in quantum mechanics (4-vector notation): 

μ
μ xipe=Ψ  

 
• Canonical replacement for introducing E&M to quantum mechanics (4-vector 

notation): 

μμμ eAppem −=  

 
• Resulting plane-wave solution for quantum + E&M (NOT a valid step): 

( ) μ
μμ xeApie −=Ψ  

 
• Resulting gauge transformation: 

( )( ) ( ) Ψ=→Ψ Λ∂−Λ∂−− μ
μ

μ
μμμ xxiexxeeApi ee  

 
This hints at the fact that the gauge term Λ causes a phase shift in the wave function. 
Solving the equations properly with integration would eliminate the derivative in the 
exponent. In retrospect, this fact is not surprising given the well-known Aharonov-Bohm 
effect where a difference in phase is related to the line integral of the vector potential. 
 

 

∫ ⋅=
path

Aldphase

 
Figure 1: Aharonov-Bohm effect 
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We are now inspired to believe that a quantum phase that is an arbitrary function of space 
and time (called a local gauge transformation) is analogous to a gauge transformation in 
E&M. Such transformations don't change the physics, so we would like to examine a 
theory that includes this symmetry. Clearly a phase shift is of interest when we have a 
complex scalar field, which is a straightforward extension of a real scalar field. 
 

• Real scalar field (simplest case with only dynamic and mass terms): 
2 21 1

2 2
mμ

μφ φ φ= ∂ ∂ −L  

( ) ( )2 21 1 0
2 2

m mμ μ μ
μ μ μ

μ
φ φ φ φ

φφ

⎛ ⎞∂ ∂ ⎛ ⎞⎜ ⎟∂ − = ∂ ∂ + ∂ + = ∂ ∂ + =⎜ ⎟⎜ ⎟ ∂∂ ∂ ⎝ ⎠⎝ ⎠

L L
 

 
• Complex scalar field (simplest case with only dynamic and mass terms): 

2* *mμ
μφ φ φ φ= ∂ ∂ −L  

 
• Global gauge transformation is a symmetry: 

φφ Λ−→ ie , ** φφ Λ→ ie  
 

• Local gauge transformation is not but should be: 
( )φφ xie Λ−→ , ( ) ** φφ xie Λ→  

( ) ( ) ( )φφφ μμμ
xixi exie Λ−Λ− Λ∂−∂→∂  

 
• Introduce a new field μA  to solve the problem: 

( ) ( ) ( ) ( ) ( )φφφφ μμμμμ
xixixi eieAexieieA Λ−Λ−Λ− +Λ∂−∂→+∂  

( ) ( ) ( )φφφ μμμ
xixi exieieAieA Λ−Λ− Λ∂+→  

( )xeAeA Λ∂+→ μμμ  

 
• Complex scalar field invariant under local gauge transformations: 

( ) ( ) ( )( )2 2* * * *ieA ieA m D D mμ μ μ
μ μ μφ φ φ φ φ φ φ φ= ∂ + ∂ − − = −L  

 

The μA  field, contained within the covariant derivative μD , is in exactly the right 

place to be the electromagnetic field in a canonical replacement. In order to treat this field 
as a particle (the photon), we need to add a term that will produce the standard equations 
of electromagnetism in the resulting equations of motion for the μA  field. 
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μννμμν AAF ∂−∂=  

( )( ) 2 1* *
4

D D m F Fμ μν
μ μνφ φ φ φ= − −L  

( ) ( )[ ] νννμν
μ φφφφ eJDDieF =−=∂ **  

 

For this photon to be massive, we would need a term like 21
2 m A Aμγ γ μ=L . However, 

this is not local gauge invariant so it is not allowed. This is consistent with what we know 
of photons and does not bother us. However, there are other forces such as the weak 
interaction that have massive force carriers. It would be nice to find a way to use the 
same mechanism to introduce massive force carriers as well. The solution is called the 
Higgs mechanism, and it can be seen most easily using a simple scalar field theory. 
 

• "Phi-fourth" theory: 

( )22* * *μ
μφ φ μ φ φ λ φ φ= ∂ ∂ − −L  

 
• Local gauge invariant phi-fourth theory: 

( )( ) ( )22 1* * *
4

D D F Fμ μν
μ μνφ φ μ φ φ λ φ φ= − − −L  

μμμ ieAD +∂=  

 
• Ground state is the minimum of the "potential": 

422)( φλφμφ +=V  
 

   02 >μ : 02 <μ : 

     

minimum at 0=φ  minimum at 
λ
μφ

2

2−
== v  

Figure 2: Potential plots for a local gauge-invariant phi-fourth theory 
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• Perform a slight change of variable: 
χφ += v  

( )( ) ( )

( )
( )( ) ( )

22

2 2

2 2 2

1* 2 * *
4

2 Re 2 Im

2 2Re * 2Re 2Im

D D v F F

e v v A A ievA

v v v

μ μν
μ μν

μ μ
μ μ

χ χ λ χ χ λ χ χ

χ χ

λ χ χ χ λ χ χ

= + − −

+ + − ∂

− + − −

L

 

 
• The χ  field is no longer physical, but our photon has acquired a mass term: 

21
2

m A Aμγ μ=L  

evm 2=γ  

 
• We can instead select new independent fields η  and ξ : 

( )ξηφ iv ++=
2

1
 

2 2 3 4

2 2 4

2 2
2 2

2 2 2

1 2
2
1 1
2 4

2
2

2 2 2

v v

v F F

e v v A A e A

e A evA v

μ
μ

μ μν
μ μν

μ μ
μ μ

μ μ
μ μ

η η λ η λ η λη

ξ ξ λ ξ λξ

η ξ η ξ η

η ξ ξ λη ξ λ ηξ

= ∂ ∂ − − −

+ ∂ ∂ + − −

⎛ ⎞+
+ + + − ∂⎜ ⎟⎜ ⎟

⎝ ⎠

+ ∂ + ∂ − −

L

 

The unphysical ξ  field can be eliminated in the unitarity gauge φφ φ
φ

Re
Imtan 1−

→
i

e . 
Thus, we have absorbed the imaginary part of φ  to become the extra degree of freedom 
needed for the μA  field to acquire a mass. The remaining real part of φ  becomes a 

massive real scalar field. We can apply the same technique to the electroweak Lagrangian 

to generate the massless photon A, the massive ±W  and Z , and a new massive particle 
called the Higgs. A similar mechanism can generate quark and lepton masses via 
interactions with the Higgs field by assuming a coupling between the fermion currents 
and the Higgs with strength proportional to the fermion mass. 
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Examination of Channels Used for Higgs 
Because the coupling of the Higgs to fermions is proportional to the mass of the 
fermions, the Higgs will generally decay into the most massive particles that are 
kinematically available to it. Which decay that is will depend on the currently unknown 
mass of the Higgs. 
 

 
Figure 3: Higgs branching ratios as a function of mass [26] 

 
Branching ratio is not the whole story, however. What matters is how that branching ratio 
compares to the background that will interfere with its identification. This is given in 
terms of signal significance, which is the number of signal events expected divided by the 
square root of the number of background events expected. 
 
Because there is a high background of QCD jets, it will be difficult to detect the Higgs 
decaying to a quark-antiquark pair. For a Higgs mass of less than 150 GeV where these 
channels are important, it is necessary to look for a Higgs being produced together with 
other heavy particles to reduce the background. 
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For a Higgs mass between 120 GeV and 160 GeV we start to see the production of a 
single W or Z boson together with a corresponding virtual W or Z boson, which then 
decay to four leptons. For the Z bosons we get llllZZH →→ *  ( eeee , μμμμ , or 

μμee ), while the W bosons have the process νν llWWH →→ * . Because the 
neutrinos can only be inferred kinematically, the Z process provides more information for 
reconstruction and is preferable in spite of a lower cross section.  
 
These processes reach even greater importance as we cross the mass thresholds that allow 
for the production of two on-shell bosons. From a Higgs mass around 180 GeV up to 700 
GeV, the four lepton decay of two on-shell Z bosons is called the "gold-plated channel" 
because the background is continuum Z production. A pair of Z bosons produced from 
the single-body decay of a Higgs concentrate the momentum of the resulting leptons in 
opposite directions. This, combined with the known mass of the on-shell Z 
intermediaries, helps reduce the background from continuum Z bosons. 
 

 
Figure 4: Signal significance as a function of Higgs mass after one year of high luminosity running [1] 
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Detector 

Description of CERN and the LHC 
CERN was founded in 1954 and is now the largest particle physics center in the world 
[16]. Located on the border between France and Switzerland near Geneva, it is the 
location of LEP (Large Electron-Positron collider). CERN has been an important site for 
particle physics, and is also the birthplace of the World Wide Web. 
 
The LHC (Large Hadron Collider) is a new collider being built at CERN in the LEP 
tunnel. It will produce counter-rotating proton beams at 7 TeV inside its 16-mile-long 
tunnel (the largest of any accelerator). 
 

 
Figure 5: LHC and experiments map [5] 

 
Bunches of about a billion protons are spaced 7.5m (25ns) apart and produce up to 
around 20 proton-proton collisions when they meet head-on at one of the collision points. 
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The LHC is currently under construction and is scheduled for final commissioning in 
2007. [31] 
 

LHC Specifications: [30] 
Accelerates protons and fully-ionized lead ions 
 
26,659 m circumference with an 11.2455 kHz frequency of revolution 
 
Protons injected by SPS (Super Proton Synchrotron) at 450 GeV and accelerated to 7 
TeV 
 
Approximately 9300 magnets with up to an 8.33 T magnetic field 
 
Approximately 120 MW of power consumed during operation 
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Description of ATLAS and the Muon Subsystem 

ATLAS 
ATLAS = A Toroidal LHC ApparatuS 
 
ATLAS is a five-story-tall particle detector being built by a collaboration of 1800 
physicists in 34 countries. It is the largest collaborative effort ever in physical sciences. 
[4] 
 

 
Figure 6: The ATLAS detector [1] 

 
ATLAS has four detector systems, each of which contains various specific types of 
detectors designed to give different information on the particles produced. Taken 
together, they provide a complete picture of the collision. 
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Figure 7: ATLAS detector systems [6] 

 

 
Figure 8: Breakdown of ATLAS systems [7] 
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Muon System 

 
Figure 9: Muon system [3] 

 
The muon system can be grouped into two categories: 

• Muon precision chambers (MDT and CSC) 
• Muon trigger chambers (RPC and TGC) 

 
The precision chambers produce the critical measurements in the bending direction 
needed to obtain muon momentum. The trigger chambers provide prompt information for 
deciding whether to keep an event as well as producing measurements in the non-bending 
direction for MDT (which has no such capability). 
 
The Muon CSC chambers represent only half a percent of the total area for precision 
chambers but account for over 15% of the channels. This is necessary because the CSC 
chambers are located in the highest rate area of the muon system. 
 
 Precision chambers Trigger chambers 
 CSC MDT RPC TGC 
Number of chambers 32 1194 596 192 
Number of channels 67,000 370,000 355,000 440,000 
Area (square inches) 27 5500 3650 2900 

Table 1: Muon chamber numerics [3] 
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Muon CSC 
The muon cathode strip chambers (CSCs) start as two layers of cathode strips with anode 
wires in between. The precision layer has 192 channels and measures in the direction of 
magnetic curvature, while the transverse layer has only 48 channels for measurement in 
the less critical non-bending direction. 
 
 

  
 Figure 10: Diagram of CSC planes [3] 

  Figure 11: Photo of assembled CSC [42] 

 
Four of these layer pairs are combined to form a single chamber. Each chamber therefore 
has four precision layers of 192 channels each and four transverse layers with a total of 
192 channels (48 each). Five ASM-II boards (four precision, one transverse) are attached 
to the chamber. Each of these boards buffers, digitizes, and serializes the 192 strip 
voltages onto a pair of gigabit fiber optic cables. The fiber optic cables carry the data out 
of the radiation area to be processed by the RODs. 
 
Chamber data read out for a single beam crossing is called a time slice. Each event 
contains four such time slices taken at 50ns intervals (two beam crossings), which means 
events can overlap. 
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Trigger/DAQ Chain and the Role of the ROD 
What starts as 40 million events per second from each detector must be reduced the point 
where it can be permanently stored for offline analysis. The first of these reductions is 
performed by the Level 1 Trigger, which has access to prompt information on jets and 
clusters in the calorimeters and muon trigger detectors. This information is compared 
against a "menu" which lists at what rates different types of events are to be kept. The 
total of all events kept must be less than the maximum design value of 75 kHz (to be 
upgraded to 100 kHz at a later date), and there are rules that place additional constraints 
on triggers (such as 8 triggers max in 80 μs). All data from all events must be buffered 
until the Leve1 1 Trigger has made its decision. 
 

 
Figure 12: Trigger chain and data flow in ATLAS [2] 

 
After the Level 1 Trigger passes an event, it is read out by the Readout drivers (RODs). 
These are custom boards designed for each detector that communicate with the detector 
to generate a digital fragment for each event. This event data is sent to large Readout 
buffers (ROBs) that hold the data for the Level 2 Trigger. This trigger has access to all 
the data but is also given Regions of Interest (ROIs) from the Level 1 Trigger to help 
narrow the search. After passing the Level 2 Trigger, the event data is gathered from all 
detectors and sent to PCs for a final decision before being written to permanent storage. 
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The ATLAS CSC ROD and GPUs 
The CSC ROD is a fairly generic 9U VME board that can accept high-rate input and 
perform processing on the data in parallel with up to 12 DSPs. The output then goes 
through a programmable Data Exchange for final event building and output. A custom 
back-of-crate card allows changing of the input and output media types without altering 
the ROD board. 
 

 
Figure 13: CSC ROD interconnection diagram [33] 

 

 
Figure 14: Photo of partially-complete CSC ROD [42] 
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GPU, HPU, DPU, SPU, RPU 
The DSPs on the CSC ROD are on daughterboards called GPU (Generic Processing Unit) 
modules. The twelve GPUs dedicated to data processing are called DPUs (Data 
Processing Units), while a thirteenth that oversees the entire ROD board is called the 
HPU (Host Processing Unit). In the CSC ROD, one DPU will be assigned to each ASM-
II board on two chambers for a total of ten SPUs (Sparsifier Processing Units). The 
remaining two RPUs (ROD Processing Units) will each receive an entire chamber's 
worth of sparsified data for final neutron rejection and output. 
 

 
Table 2: Table of GPU types [33] 

 Figure 15: Photo of GPU daughterboard [42] 

 
Each DPU Module can communicate with the Interconnect via the Expansion Bus FPGA 
(XFPGA) and with the Data Exchange via the EMIF FPGA (EFPGA). The HPU can 
perform random access on the DPUs' 512kB internal memory via DPU Control and the 
DPUs have an additional 8MB of external SDRAM. 
 

 
Figure 16:  GPU block diagram [33] 

GPU Generic Processing Unit x13
  HPU Host Processing Unit x1 
  DPU Data Processing Unit x12
    SPU Sparsifier Processing Unit x10
    RPU ROD Processing Unit x2 
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Design 

SPU vs. RPU 
Two gigabit fiber optic cable's worth of data is the limit that one DPU can handle from 
the XFPGA. Therefore, five DPUs called SPUs are the first to receive data from the five 
ASMs. Their job is to make a significant reduction in the data by eliminating channels 
without a hit or with a hit that is from a different beam crossing. This is called 
sparsification, and it consists of a threshold cut and two time cuts (one coarse, one fine). 
The SPUs are also responsible for formatting the data, identifying clusters, and 
generating summary information about them. 
 
The SPUs do not have data from the entire chamber, so there is no way to perform 
neutron rejection at this level. Therefore, the output from the five SPUs is directed to 
another DPU called the RPU. The RPU looks at the summarizing information about the 
clusters and keeps only those clusters that have a corresponding hit in at least one other 
layer. There is also some final data formatting before output. 
 
The output of two RPUs is combined by the Data Exchange into the ATLAS standard 
format and sent to the ROB. One ROD therefore handles two chambers. 
 
The SPUs and RPUs have no direct communications with each other. The data is 
transferred through the Data Exchange via their corresponding EFPGAs. 
 
More information on the SPU and RPU is available in the SPU and RPU sections below. 
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Events and data flow in the ROD 

Events 
The input to the SPU is timeslices. Each timeslice contains 96 words of ADC samples 
and an 8-word trailer. The exact number of timeslices per Event can vary during testing 
and calibration, but it will be 4 during normal running. However, because some 
timeslices are shared between Events, the number of timeslices that are removed from 
input during processing can vary. 
 
The output of the SPU and input to the RPU is called the Sparsified Data Format. This 
format is variable length but is more easily handled if it is padded to a multiple of some 
power of two (16 in the current software). Each SPU will output one of these variable-
length units per Event, but the RPU will read in five of them per Event (one from each 
SPU). The final output of the RPU will also be variable-length, but will not be padded 
because the ATLAS format does not use any special alignment. 
 
To allow for a single DPU framework, we need a generalized Event format that is 
flexible enough to support all these modes but restricted enough to allow efficient, simple 
code to be used. 
 
An Event is a fixed number of Packets. This number, EEvveennttLLeennggtthh, is selectable when 
setting up for a run. The Packets can be fixed or variable length, with at most 
MMaaxxPPaacckkeettLLeennggtthh Frames per Packet. If the Event is fixed-length, then each Packet will 
contain exactly one Frame of FFrraammeeSSiizzee words. If the Event is variable-length, then the 
first word of the first Frame will be a size word that says how many words are in the 
Packet (including the size word but excluding padding in the last Frame). 
 
This format is generic enough to handle all the cases needed by the SPU and RPU as well 
as many unforeseen formats that have come up during testing. The format is completely 
independent of the data being transferred, which maintains a clear separation between the 
buffer management code and the Decoder-specific code that processes the data. 
 
 

 EventLength MaxPacketLength FrameSize 
SPU Input 4 (typically) 1 (fixed-length) 96+8 

SPU Output 1 38 (typically) 16 
RPU Input 5 38 (typically) 16 

RPU Output* 1 26 (typically) 16 
Table 3: Parameters used for various input and output modes (see text for description) 

 
 
 
 
 
* The RPU will not send the size word or padding in its output. 
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EVENT

PACKET
0

PACKET
1

PACKET
2

PACKET
EventLength - 1

PACKET
(MaxPacketLength = 1)

Total size is FrameSize words

PACKET
(MaxPacketLength > 1)

Total size is N * FrameSize words

FRAME
0

FRAME
1

FRAME
N - 1

(N <= MaxPacketLength)

FRAME
0

Variable-Length

Fixed-Length

 
Figure 17: Generic Event format 

Queues 
Events come into the DPU Input Buffer (DIB) and leave through the DPU Output Buffer 
(DOB). Both buffers use the same Event format, allowing for a variety of configurations 
of input and output. The classes for the DIB and DOB also support different sources and 
destinations such as external memory buffers and different FPGAs. 
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Data flow 
The overall flow of data starts at the front end where the chambers are directed to output 
their ADC samples by the SCA controller on the ROD. These ADC samples are 
reordered as needed and are sent to the SPUs along with a trailer containing trigger 
information. The SPUs perform their sparsification and send the result to the RPUs via 
the Data Exchange. The RPUs then perform their processing and send the result out to the 
Read Out Link and eventually to the ROB. 
 
The readout is initiated by a trigger that is received by the TTC FPGA. The HPU 
orchestrates everything and is responsible for keeping data flowing through the ROD. 
 

ROL 

Data Exchange 
(DX) 

Data Processing Units 
(DPUs) 

Backplane Interface Area 
(BPIA) 

Transition Module 
(TM) 

Front End 
(FE) 

ASM 

ASM 

ASM 

ASM 

ASM 

SPU

SPU

SPU

SPU

SPU

RPU

FPGA for Triggers and SCA Controller 
(TTC FPGA) 

Host Processing Unit 
(HPU) 

Triggers from ATLAS 
(TIM) 

ROD 

Sends triggers 
to the TTC FPGA 

Sends samples and 
error information 

to the BPIA 

Gets trigger info 
from the TTC FPGA

Gets raw samples 
from the FE 

Gets samples and 
error information 

from the TM 

Sends SCA control 
to the FE 

Gets SCA control 
from the TTC FPGA

Directs sparsified data
between the DPUs 

Gets control 
and leaders/trailers 

from the HPU 

Sends output events 
to the ROL 

Gets chamber data 
from the RPUs 

x2 x2 

Sends time slices 
to the SPUs 

Gets triggers from the TIM 

Sends triggers to the HPU and the BPIA 

Sends SCA control to the TM 

Gets triggers from the TTC FPGA 

Sends control to the DPUs 

Sends control and leaders/trailers to the DX 

Gets control 
from the HPU 

 
Figure 18: Data flow in the ROD 
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Requirements 
There are several requirements of the software. 
 

• Real-time performance 
Specifically, there is a hard requirement that the average performance stay under 
3000 DSP clock cycles per Event processed (necessary for 100kHz trigger rate) 
and that the maximum time to perform any task stay under 10,000 DSP clock 
cycles (necessary to prevent input buffer overflow). 

 
• Error-free operation 

It is not acceptable for the DPUs to output erroneous data under any 
circumstances. Any alternative, including discarding or generating a Fault 
condition, is preferable. 

 
• Continuous running 

While no system can make a 100% guarantee of perfect operation, the DPUs must 
have minimal failures to maximize data taking. The CSC ROD is one part among 
many in ATLAS, and the downtime of the entire detector is a combination of the 
downtimes of the individual parts. 

 
• Online monitoring 

Some way must exist to allow the HPU and outside world to monitor the status of 
the DPUs and make run time changes. In particular, some method for accessing 
the output of histograms or performing Event capture is needed. There should also 
be a way to access run performance indicators and halt a run if an error is 
detected. 

 
• Handle unusual Events without choking 

Naturally the system cannot handle any arbitrary input that might exceed the 
specifications (such as a million Events in a row with every channel hit). 
However, the system should be able to accept such anomalous Events on an 
occasional basis. It should also be able to handle any single Event that is 
theoretically possible without encountering an untested boundary case that causes 
a crash. 

 
More concisely: 
 

1. "The DPU software shall operate in such a manner as to allow processing of 
triggers at the 100kHz rate with no discarding expected under normal operation." 

 
2. "The DPU software shall attempt to deal with all situations without data loss 

except those identified as unavoidable faults." 
 

3. "The DPU software shall respond to control initiated by the HPU, and shall relay 
DPU status information to the HPU on a regular basis." 
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The HPU-DPU relationship 
In order to meet requirement 3 above, it is necessary to have good communications 
between the HPU and DPUs. Because the HPU has a total of 12 DPUs to communicate 
with, it's essential that this communication not be CPU-intensive for the HPU. 
 
DPU Control provides the mechanism for communication. With it, the HPU is able to 
perform arbitrary accesses into DPU memory via the XFPGA. This lends itself 
immediately to the use of shared memory for communication. The first level of 
communication, called the Status struct, does just this. The Status struct is used to 
initialize the DPU, relay status information to the HPU, and accept high-priority Orders 
from the HPU (used only to override the normal operation of the DPU during testing or in 
the event of an error). The Status struct also contains pointers so that the HPU can locate 
the other buffers used for communication. 
 
A shared memory struct is acceptable for asynchronous communication, but it is not an 
effective way to serialize commands. This serialization is important to ensure that 
requests for histogramming or Event capture are received before the corresponding Event 
has been processed and removed. To accommodate this, the main Command stream is 
received by the Command Input Buffer (CIB). The CIB is a circular buffer that receives 
Commands to process an Event or perform any other task in the system. The CIB uses the 
same class as the DIB, and Commands conform to the generic Event format. 
 
Because the output of both the SPU and RPU is facilitated by the Data Exchange, and the 
Data Exchange is driven by a command stream from the HPU, it is necessary that the 
HPU know when Events are ready for output and how big they are. This information, as 
well as the response to any other Command, is returned through a circular buffer called 
the Response Buffer. This allows the HPU to read the details of several Events at once 
rather than be forced to handshake each Response one by one. 
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The DPU software framework 
The DPU software framework has 6 main systems: 

• Management System 
• Data System 
• Command System 
• Scheduling System 
• Hardware Abstraction Layer (HAL) 
• Drivers 
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Data System
Uses plug-in Decoders to

process events

Command System
Uses plug-in Functions to

service host requests

Scheduling System
Schedules plug-in Tasks for

repeated use

Management System
Controls execution based on priorites

Initializes, Updates, and Terminates all systems
Has direct Driver/HAL access as needed for bootstrapping communications

Drivers
Provide a thin wrapper to the hardware

Hardware Abstraction Layer (HAL)
Provides a simple interface to hardware-related buffers and structures

 
Figure 19: High-level block diagram of DPU software framework 
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Management System 
The Management System looks at the current state of the DPU and decides what should 
be done next. It is also responsible for IInniittiiaalliizzee(()), TTeerrmmiinnaattee(()), and the regular UUppddaattee(()) 
that occurs between all other activities. 
 

                                                                                                                                Main Loop
                                                                                             (10,000 DSP clock cycles max)

Initialize

Who do we
service?

Idle

Terminate

Service
Command System

Boot

Service
Data System

Service
Scheduling System

"End Run" Order?

Command

         Data

Scheduling

Yes

Update

No

 
Figure 20: Management System flowchart 
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Data System 
The Data System is responsible for the actual processing of Events. Compile-time 
plug-ins called Decoders are used to perform this processing. 
 
Each Decoder provides a common interface for IInniittiiaalliizzee(()) and TTeerrmmiinnaattee(()) as well as a 
CCaannIInniittiiaalliizzee(()) function that tells the Data System whether the Decoder is usable in the 
current mode of operation. The function EExxeeccuuttee(()) handles the processing of one Event. 
 
If for some reason the DIB is filling beyond our ability to drain it, each operational mode 
also selects a Discard Decoder. This is a special plug-in that is invoked to quickly remove 
Events without full processing. A special output is generated to let the next stage of 
processing know that a discard was performed. Discarding is not expected to be needed 
in normal operation, but it is preferable to a Fault or crash during commissioning. 
Discarding is automatic and takes priority over the Command stream. 

Command System 
The Command System handles the incoming Command stream and reports to the 
Management System what the next Command will be. Generally these are Decode 
Commands which instruct the DPU to process another Event, but there are also Function 
Commands that invoke a compile-time plug-in called a Function. These can be used to do 
anything, including starting, stopping, or requesting output from a Task in the Scheduling 
System. 
 
Orders are also considered part of the Command System. These are the highest-priority 
signals the HPU can send and will be executed before all other actions. Sending an Order 
to a DPU violates normal operation rules and is only used during testing or to end a run. 

Scheduling System 
The Scheduling System takes care of executing compile-time plug-ins called Tasks. 
These are started by the HPU and are automatically executed at pre-determined times. 
They can be set to activate at a given wall clock time or on a given Event number. 
 
Task execution must still compete against Event processing and other Command 
servicing for time in the Management System, but the Scheduling System decides which 
Task will be done during the next opportunity. Tasks can request either capture or 
servicing: capture is scheduled for a specific time or Event number, while service can 
occur at any time up to a maximum time or Event number. The idea is for Tasks to do 
only quick operations during their time-critical capture and defer any longer calculations 
for a service slot that is easier to schedule. 
 
In the event that the Scheduling System falls behind, the entire list of Tasks must be 
cleared and restarted. The Scheduling System is of lower priority than Event processing 
and is the first to be sacrificed if things are running behind. 
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Priorities 
The decision of the Management System is based on a color-coded priority assigned to 
each of the three high-level Systems beneath it. The basic meaning of each priority level 
is consistent between these Systems. 
 

prRed
Too late to service without loss

Data requires immediate discarding
Scheduling can remain Red indefinitely

prYellow
Needs servicing to avoid loss

Data should remain below Red if serviced immediately

prGreen
Normal priority when awaiting servicing

prEmpty
No work to be performed

 
Figure 21: Color-coded Priority levels 
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Orders are given the top priority and are serviced by special Functions. The following 
table summarizes who is serviced or invoked for all other situations: 
 

                           Scheduling
nothing to do service later capture or service now (abort)

Data Next Command prEmpty prGreen prYellow prRed
prEmpty None Wait Scheduling Scheduling Scheduling
prEmpty Decoder Wait Scheduling Scheduling Scheduling
prEmpty Function Function Scheduling Scheduling Scheduling
prGreen None Wait Scheduling Scheduling Scheduling
prGreen Decoder Decoder Scheduling Scheduling Scheduling
prGreen Function Function Scheduling Scheduling Scheduling
prYellow None Wait Wait Wait Wait
prYellow Decoder Decoder Decoder Decoder Decoder
prYellow Function Function Function Function Function
prRed None Discard Discard Discard Discard
prRed Decoder Discard Discard Discard Discard
prRed Function Discard Discard Discard Discard

 

Table 4: Management System Priority decision table 

 
Normal rates will not increase Data System Priority if Decoders are constantly serviced. 
This follows from basic performance requirements. The HPU is responsible for not 
sending too many Function Commands in between Decode Commands. How this is done 
depends on the exact performance of the Decoder and the Function Commands being 
used, but it will generally be specified as a limit on the minimum number of Decode 
Commands between Function Commands. 
 
The HPU must also ensure that Decode Commands arrive before the Data System goes 
Yellow. This places a limit on the latency of the HPU in trigger processing. 
 



 29 

Hardware Abstraction Layer (HAL) 
The HAL provides high-level interfaces to low-level functionality. 
 

• HAL Control 
HAL Control is the interface used by the Management System to Initialize, 
Update, and Terminate the HAL. The HAL is responsible for the underlying 
drivers. 

 
• Status Structure 

The Status struct provides general communications with the HPU using shared 
memory. The struct is publicly available to the entire framework. 

 
• Command Input Buffer (CIB) 

The CIB receives serial Commands from the HPU. All major actions (besides 
discarding and Orders) taken by the DPU are in response to a Command. 

 
• Response Buffer 

The Response Buffer holds outgoing serial Responses to Commands. The 
Response to a Decode Command (a command to initiate processing an Event) is 
size information for the resulting Event to be output. 

 
• DPU Input Buffer (DIB): 

The DIB provides a simple interface to Decoders (routines responsible for 
processing an Event) to access an input Event. All buffer management for input is 
handled by the DIB. 

 
• DPU Output Buffer (DOB): 

The DOB provides a simple interface to Decoders (routines responsible for 
processing an Event) to generate an output Event. All buffer management for 
output is handled by the DOB. 

 
• Policy Subsystem 

The Policy Subsystem maintains a simple database of Event information 
(EEvveennttLLeennggtthh, MMaaxxPPaacckkeettLLeennggtthh, FFrraammeeSSiizzee, etc) for different data types. These 
values can be loaded at run time by the HPU or can be overridden to create a new 
operational mode. 

 
• Parameter Subsystem 

The Parameter Subsystem allows the HPU to pre-load values to be used as the 
parameters for Commands. The use of these Parameter sets is transparent on the 
DPU side and reduces the time needed to transfer commonly used sets. 
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Figure 22: HAL System diagram 

Drivers 
The Drivers provide a thin wrapper to four major types of hardware: 

• DMA 
• FPGAs 
• Timers 
• Memory 

 
Drivers are primarily used by the HAL to implement its functionality. 
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Policies and design rules for the software 
To meet the requirements of the DPU software, there are a number of rules that must be 
followed. 
 

1. Expensive operations (such as non-power-of-two divides and dynamic memory 
allocation) can never be used during a run. 

 
2. Anything that can be done before or after a run should be. 

 
3. The most critical part of the program is the part that is executed for every action 

(i.e. UUppddaattee(()) and part of the Management System). This is called the Main Line, 
and everything should be kept off the Main Line if possible. 

 
4. Maximum time matters as much as, if not more than, average time. You cannot 

have open-ended loops that execute an unknown number of times during a run, 
and you should not execute anything more than once per pass on the Main Line. 

 
5. Many memory accesses are vvoollaattiillee by nature, but the vvoollaattiillee keyword carries 

double meaning in C++. It implies that the access itself cannot be optimized 
away, and it prevents the optimizer from reordering across that line. This can 
prevent proper pipelined loops when copying to/from vvoollaattiillee memory regions. 
Such loops must use the separately-compiled functions such as FFaassttCCooppyy<<>>(()) 
and FFaassttCCooppyySSttrriiddee<<>>(()) to get full optimization. 

 
6. In spite of the need for optimization, working code is more important than fast 

code. All code should be as portable and standards-conforming as possible, and 
should follow the rules of proper encapsulation and data hiding. 
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SPU 

Sparsification algorithm 
The SPUs receive 192 channels of data with four 12-bit ADC samples per channel. At a 
trigger rate of 100 kHz this means 166 MB/s of data. Each RPU would therefore receive 
over 800 MB/s, which is a phenomenal amount of data. While the CSC are high-rate 
chambers, the occupancy is quite low; this means that only a few channels contain 
meaningful information and the rest are noise and leftovers from other beam crossings. 
 
When a particle passes through the chamber and generates a signal, a cluster is formed. 
This cluster is a group of neighboring channels that show a response to the particle. Each 
channel in the cluster is a hit, and ideally we only want to keep the hits from the clusters 
that occurred in a chosen time window for the trigger. A threshold cut is used to eliminate 
channels that are not hit, and a time cut is used to eliminate clusters that are out-of-time. 
For efficiency reasons the first time cut is made on channels that are outside a rough 
75 ns window, followed by a finer cut on clusters to a programmable window size. 
 
The preamp shapers in the CSC readout electronics produce a 7th order complex bipolar 
Gaussian [19]. This looks roughly like a parabola on a leading positive lobe followed by 
a smaller negative lobe with a longer tail. The four ADC samples are spaced 50 ns apart, 
giving a 200 ns range that covers the positive lobe. Because the triggers come on a 25 ns 
beam crossing clock, there are two different trigger/sampling phases. To simply things, 
the sampling is adjusted so that the nominal peaking time for in-time hits falls halfway 
between the B (second) sample of the later sampling and the C (third) sample of the 
earlier sampling. The case where the B sample is nearer the nominal peaking time is 
called phase B, and the case where C is nearer is called phase C. 
 
Thanks to this symmetric sampling, there is a simple algorithm for applying a threshold 
and rough 75 ns time cut on channels. The requirement is that the nominally largest 
sample (B for phase B, C for phase C) be larger than a threshold, sample A, and sample 
D. This test is not sensitive to the exact shape of the positive lobe, and is accurate in the 
approximation that the positive lobe is symmetric about the peak. 
 

Pulse at center of acceptance window

Acceptance window

75ns

 
Figure 23: In-time pulse (lines every 25 ns, squares are phase B samples, circles are phase C) 
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Pulses near edges of acceptance window

Acceptance window

75ns

 
Figure 24: In-time pulses (lines every 25 ns, squares are phase B samples, circles are phase C) 

 

Pulses outside of acceptance window

Acceptance window

75ns

 
Figure 25: Out-of-time pulses (lines every 25 ns, squares are phase B samples, circles are phase C) 

 
Average flux with standard safety factor of 5 (muon) [3]: 1500 Hz/cm2 

Average flux with standard safety factor of 5 (background) [24]: 1500 Hz/cm2 
Average flux (muon + background): 3000 Hz/cm2 

Precision strip area [3]: 25 cm2 

Transverse strip area [3]: 100 cm2 

Precision cluster probability per beam crossing (25ns): 0.19% 
Transverse cluster probability per beam crossing (25 ns): 0.75% 

Precision cluster probability in a 75 ns rough time cut: 0.56% 
Transverse cluster probability in a 75 ns rough time cut: 2.25% 

Typical precision cluster width (number of channels above threshold): 5 
Typical transverse cluster width (number of channels above threshold): 2 

Precision channel probability in a 75ns rough time cut: 2.8% 
Transverse channel probability in a 75ns rough time cut: 4.5% 

Average number of precision clusters per SPU after threshold/75ns cut: 1.1 
Average number of transverse clusters per SPU after threshold/75ns cut: 4.3 
Average number of precision channels per SPU after threshold/75ns cut: 5.4 

Average number of transverse channels per SPU after threshold/75ns cut: 8.7 
Table 5: CSC rate numerology 
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After this first cut there are only a few clusters per layer. The next step is to identify the 
clusters by finding groups of contiguous hit channels. This may cause us to see two 
overlapping clusters as a single cluster, but this can be dealt with offline. Before we make 
this cluster identification, it is important to consider the effect of bad channels. A channel 
that is dead may split a cluster into two clusters, and a channel that is hot or noisy could 
produce spurious clusters. To address this, we adopt a policy that bad channels cannot be 
the seed for a cluster, but should be treated as a hit if they are next to a channel that is hit. 
This will bridge the gap in a broken cluster without producing extra clusters that cannot 
be relied upon. 
 
This is also the time to mark additional neighbors to be kept. The software offers the 
option of marking one or more channels next to each cluster to be treated as though they 
were hit. This option allows for more detailed charge centroid calculations for finding the 
position by including the below-threshold neighbors. Recent studies [43] suggest using 
one precision neighbor as the threshold can be set quite low, but more can also be used. 
 
Once bad channels are dealt with and neighbors marked, we can find the clusters and 
compute a more precise time estimate for the next cut. To get a time estimate, we can 
treat the positive lobe as a parabola and perform inverse parabolic interpolation using 
samples A/B/C or samples B/C/D. 
 

• Formulae giving peaking times relative to time of center sample: [34] 

( ) ( ) ( )

( ) ( ) ( )
DBC

DBnscnst

CAB
CAnsbnst

−−
−

−=

−−
−

−=

2
25

2
25

 

 
While these appear to be very different formulae, shifting to a common time reference 
gives the same numerator with different denominators. As it turns out, in the ideal case of 
a perfect parabola we expect the discriminants (denominators) to be equal. We will use 
the larger denominator of the two: this increases the chance of getting a denominator that 
is suitably positive to give a useful result and errs on the side of keeping the cluster 
(smaller time). 
 
In additional to a very small, zero, or negative denominator, there are other reasons why a 
given channel may not be suitable for time estimation. Channels that were below 
threshold (neighbors) and channels that are marked as bad should never be used for time 
estimation. Also, any sample that is high or low saturated should not be used. This can 
mean actual saturation or merely outside the region of linearity. Normally a linear 
calibration correction should be applied but it will not affect the time we obtain. 
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For a given cluster, the best time to use is the time of the largest eligible channel in that 
cluster. Practically speaking, that means the channel with the largest sample B (for phase 
B) or sample C (for phase C) that can have a time computed. The choice of which 
channel has the highest sample is affected by a linear calibration correction, so this must 
be applied to that sample before comparison. This produces the best time for a cluster, 
but what if the cluster is really two or more overlapping cluster? If an out-of-time cluster 
were to overlap with a smaller in-time cluster, the out-of-time cluster would have the 
largest sample and cause the entire cluster pair to be rejected. To avoid this, we also 
compute the time for each of the sides of the cluster and compare these to the time 
obtained from the largest channel. If all three times do not fall into a programmable 
range, the cluster time is left blank and the cluster is considered to pass. Offline software 
can work further to compute an accurate time. 
 
Once a time is computed, we apply a final time cut on clusters to around 40-50 ns, which 
is enough to get all in-time muons [36]. This gives a 25-35 ns leeway between the final 
window and the original 75 ns window, making the output insensitive to even a 
substantial error in the 75 ns cut. The times produced by inverse parabolic interpolation 
are accurate to about 1 ns [20]. 
 
After the last time cut, the SPU must produce a set of cluster bitmaps. These are six 
words that show which channels are included in the cluster. These, together with a total 
bitmap for the entire SPU, are used by the RPU for neutron rejection. The bitmaps are 
compressed by suppressing zero words and sent along with the cluster-based output via 
the Data Exchange. 
 
 
Summary of processing 
 

• Sparsification (threshold and 75ns cut) 
 

• Neighbor marking and bad channel masking 
 

• Cluster identification 
 

• Cluster time estimation and time cut 
 

• Bitmap creation 
 

• Output formatting 
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Sparsified data format 

Events 
 

Data 

SPU status header

Common Header

Normal Event Error Event Discard Event 

 

Common header 
 

E  

31E
  

30E
  

29E
  

28 E
  

27E
  

26E
  

25E
  

24 E
  

23E
  

22E
  

21E
  

20 E
  

19E
  

18E
  

17E
  

16  E
  

15E
  

14E
  

13E
  

12 E
  

11E
  

10E
  

9 E
  

8  E
  

7 E
  

6 E
  

5 E
  

4  E
  

3 E
  

2 E
  

1 E
  

0

0 0 0 0  M  

3 M
  

2 M
  

1 M
  

0  0 0 0 0  T
  

3 T
  

2 T
  

1 T
  

0   S
  

15S
  

14S
  

13S
  

12 S
  

11S
  

10S
  

9 S
  

8  S
  

7 S
  

6 S
  

5 S
  

4  S
  

3 S
  

2 S
  

1 S
  

0

 
• M = Module ID 
• T = Type of Event (0 = Normal, 1 = Discard, 2 = Error) 
• S = Size of Event (in words, including the common header and ghost words) 
• E = Event index 

SPU status header 
 

Status words (timeslice D)

Status words (timeslice C)

Status words (timeslice B)

Status words (timeslice A)

 

Status words 

S  

31S
  

30S
  

29S
  

28 S
  

27S
  

26S
  

25S
  

24 S
  

23S
  

22S
  

21S
  

20 S
  

19S
  

18S
  

17S
  

16  S
  

15S
  

14S
  

13S
  

12 S
  

11S
  

10S
  

9 S
  

8  S
  

7 S
  

6 S
  

5 S
  

4  S
  

3 S
  

2 S
  

1 S
  

0

S  

31S
  

30S
  

29S
  

28 S
  

27S
  

26S
  

25S
  

24 S
  

23S
  

22S
  

21S
  

20 S
  

19S
  

18S
  

17S
  

16  S
  

15S
  

14S
  

13S
  

12 S
  

11S
  

10S
  

9 S
  

8  S
  

7 S
  

6 S
  

5 S
  

4  S
  

3 S
  

2 S
  

1 S
  

0

S  

31S
  

30S
  

29S
  

28 S
  

27S
  

26S
  

25S
  

24 S
  

23S
  

22S
  

21S
  

20 S
  

19S
  

18S
  

17S
  

16  S
  

15S
  

14S
  

13S
  

12 S
  

11S
  

10S
  

9 S
  

8  S
  

7 S
  

6 S
  

5 S
  

4  S
  

3 S
  

2 S
  

1 S
  

0

S  

31S
  

30S
  

29S
  

28 S
  

27S
  

26S
  

25S
  

24 S
  

23S
  

22S
  

21S
  

20 S
  

19S
  

18S
  

17S
  

16  S
  

15S
  

14S
  

13S
  

12 S
  

11S
  

10S
  

9 S
  

8  S
  

7 S
  

6 S
  

5 S
  

4  S
  

3 S
  

2 S
  

1 S
  

0

S  

31S
  

30S
  

29S
  

28 S
  

27S
  

26S
  

25S
  

24 S
  

23S
  

22S
  

21S
  

20 S
  

19S
  

18S
  

17S
  

16  S
  

15S
  

14S
  

13S
  

12 S
  

11S
  

10S
  

9 S
  

8  S
  

7 S
  

6 S
  

5 S
  

4  S
  

3 S
  

2 S
  

1 S
  

0

S  

31S
  

30S
  

29S
  

28 S
  

27S
  

26S
  

25S
  

24 S
  

23S
  

22S
  

21S
  

20 S
  

19S
  

18S
  

17S
  

16  S
  

15S
  

14S
  

13S
  

12 S
  

11S
  

10S
  

9 S
  

8  S
  

7 S
  

6 S
  

5 S
  

4  S
  

3 S
  

2 S
  

1 S
  

0

 
• S = Status words from BPI 



 37 

Data 
 

Cluster 2

Cluster 1

Cluster 0

B  

31B
  

30B
  

29B
  

28 B
  

27B
  

26B
  

25B
  

24 B
  

23B
  

22B
  

21B
  

20 B
  

19B
  

18B
  

17B
  

16  B
  

15B
  

14B
  

13B
  

12 B
  

11B
  

10B
  

9 B
  

8  B
  

7 B
  

6 B
  

5 B
  

4  B
  

3 B
  

2 B
  

1 B
  

0

B  

31B
  

30B
  

29B
  

28 B
  

27B
  

26B
  

25B
  

24 B
  

23B
  

22B
  

21B
  

20 B
  

19B
  

18B
  

17B
  

16  B
  

15B
  

14B
  

13B
  

12 B
  

11B
  

10B
  

9 B
  

8  B
  

7 B
  

6 B
  

5 B
  

4  B
  

3 B
  

2 B
  

1 B
  

0

B  

31B
  

30B
  

29B
  

28 B
  

27B
  

26B
  

25B
  

24 B
  

23B
  

22B
  

21B
  

20 B
  

19B
  

18B
  

17B
  

16  B
  

15B
  

14B
  

13B
  

12 B
  

11B
  

10B
  

9 B
  

8  B
  

7 B
  

6 B
  

5 B
  

4  B
  

3 B
  

2 B
  

1 B
  

0

B  

31B
  

30B
  

29B
  

28 B
  

27B
  

26B
  

25B
  

24 B
  

23B
  

22B
  

21B
  

20 B
  

19B
  

18B
  

17B
  

16  B
  

15B
  

14B
  

13B
  

12 B
  

11B
  

10B
  

9 B
  

8  B
  

7 B
  

6 B
  

5 B
  

4  B
  

3 B
  

2 B
  

1 B
  

0

B  

31B
  

30B
  

29B
  

28 B
  

27B
  

26B
  

25B
  

24 B
  

23B
  

22B
  

21B
  

20 B
  

19B
  

18B
  

17B
  

16  B
  

15B
  

14B
  

13B
  

12 B
  

11B
  

10B
  

9 B
  

8  B
  

7 B
  

6 B
  

5 B
  

4  B
  

3 B
  

2 B
  

1 B
  

0

B  

31B
  

30B
  

29B
  

28 B
  

27B
  

26B
  

25B
  

24 B
  

23B
  

22B
  

21B
  

20 B
  

19B
  

18B
  

17B
  

16  B
  

15B
  

14B
  

13B
  

12 B
  

11B
  

10B
  

9 B
  

8  B
  

7 B
  

6 B
  

5 B
  

4  B
  

3 B
  

2 B
  

1 B
  

0

C  

15C
  

14C
  

13C
  

12 C
  

11C
  

10C
  

9 C
  

8  C
  

7 C
  

6 C
  

5 C
  

4  C
  

3 C
  

2 C
  

1 C
  

0   D
  

15D
  

14D
  

13D
  

12 D
  

11D
  

10D
  

9 D
  

8  D
  

7 D
  

6 D
  

5 D
  

4  D
  

3 D
  

2 D
  

1 D
  

0

...  
• C = Cluster count 
• D = Number of data words that follow in clusters 
• B = Bitmap of all clusters 

Cluster 
 

Sample words

Bitmap words

Cluster words

 

Cluster words 
 

0 0 0 0  0 0 0 0  0 0 0 0  0 B  

2 B
  

1 B
  

0   0 0 0 F  T
  

11T
  

10T
  

9 T
  

8  T
  

7 T
  

6 T
  

5 T
  

4  T
  

3 T
  

2 T
  

1 T
  

0

0 A  

3 A
  

2 A
  

1  A
  

0 L
  

1 L
  

0 D  C
  

7 C
  

6 C
  

5 C
  

4  C
  

3 C
  

2 C
  

1 C
  

0   W
  

15W
  

14W
  

13W
  

12 W
  

11W
  

10W
  

9 W
  

8  W
  

7 W
  

6 W
  

5 W
  

4  W
  

3 W
  

2 W
  

1 W
  

0

 
• A = Adjustment for channel number 
• L/D/C = Layer/Direction/Channel number (D = 0 for precision, 1 for transverse) 
• W = Width of cluster (number of sample word pairs) 
• B = Bitmap present (each bit activates the corresponding pair of bitmap words) 
• F = Failed to compute time (time will be 0) 
• T = Time (signed, in nanoseconds) 
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Bitmap words 
 

B  

31B
  

30B
  

29B
  

28 B
  

27B
  

26B
  

25B
  

24 B
  

23B
  

22B
  

21B
  

20 B
  

19B
  

18B
  

17B
  

16  B
  

15B
  

14B
  

13B
  

12 B
  

11B
  

10B
  

9 B
  

8  B
  

7 B
  

6 B
  

5 B
  

4  B
  

3 B
  

2 B
  

1 B
  

0

B  

31B
  

30B
  

29B
  

28 B
  

27B
  

26B
  

25B
  

24 B
  

23B
  

22B
  

21B
  

20 B
  

19B
  

18B
  

17B
  

16  B
  

15B
  

14B
  

13B
  

12 B
  

11B
  

10B
  

9 B
  

8  B
  

7 B
  

6 B
  

5 B
  

4  B
  

3 B
  

2 B
  

1 B
  

0

 
• B = Bitmap for this cluster 

Sample words 
 

C  

15C
  

14C
  

13C
  

12 C
  

11C
  

10C
  

9 C
  

8  C
  

7 C
  

6 C
  

5 C
  

4  C
  

3 C
  

2 C
  

1 C
  

0   D
  

15D
  

14D
  

13D
  

12 D
  

11D
  

10D
  

9 D
  

8  D
  

7 D
  

6 D
  

5 D
  

4  D
  

3 D
  

2 D
  

1 D
  

0

A  

15A
  

14A
  

13A
  

12 A
  

11A
  

10A
  

9 A
  

8  A
  

7 A
  

6 A
  

5 A
  

4  A
  

3 A
  

2 A
  

1 A
  

0   B
  

15B
  

14B
  

13B
  

12 B
  

11B
  

10B
  

9 B
  

8  B
  

7 B
  

6 B
  

5 B
  

4  B
  

3 B
  

2 B
  

1 B
  

0

 
• A = sample A 
• B = sample B 
• C = sample C 
• D = sample D 

Ghost words 
At the end of Events can be added one or more ghost words. The presence of these words 
can be inferred by comparing the reported total size with the actual size of any data words 
and known headers. These words are not used in normal running and should be ignored 
by ATLAS software. The primary use of these words is to aid debugging during 
commissioning. 
 
There are no current ghost words, since the status words are already sent. 
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Implementation 
The key to efficient performance in the SPU Decoder is the use of parallel assembly for 
time-critical inner loops. There are 9 assembly language routines used in processing on 
the SPU: 
 

OOOOTTEElliimmiinnaattee assembly function 
1. Reads three time slices from the input buffer and the thresholds for each channel. 
2. Applies threshold test and 75ns OOT elimination to all channels. 
3. Stores a bitmap indicating which channels passed. 

 
Performance: 241 DSP clocks (disables interrupts) 
 
 

   LDW     .D1   *taddr1++,                        thresh1 
 

   LDW     .D1   *baddr1++,                        big1 
 

   LDW     .D1   *laddr1++,                        left1 
 

   LDW     .D1   *raddr1++,                        right1 
 
 
   NOP 
 

   NOP 
 

   SUB2    .S1   thresh1,         big1,            thresh1 
 

   SUB2    .S1   left1,           big1,            left1 
 
 
   SUB2    .S1   right1,          big1,            right1 
|| AND     .L1   thresh1,         left1,           left1 
 

   AND     .L1   left1,           right1,          right1 
 

   MPY     .M1X  right1,          shift2,          low1 
 

   MPYHL   .M1X  right1,          shift2,          high1 
 
 
   SMPYH   .M1X  low1,            shift2,          mask1 
 

   MPYH    .M1X  high1,           shift2,          high1 
 

   NOP 
 

   OR      .L1   mask1,           high1,           temp1 
 
 
   NOP 
 

   SHL     .S1   temp1,           2*(COUNT2%16),   temp1 
 

   OR      .L1   BITMAP1,         temp1,           BITMAP1 
 

Figure 26: Side 1 loop kernel for OOOOTTEElliimmiinnaattee(()) 
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This function, like most, relies on a heavily pipelined loop with multiple operations 
occurring in parallel. This particular loop is a good example of pipelining, as it requires 
just under five blocks of four DSP clock cycles each in order to be paralleled with itself 
every four clock cycles. This means that we have a four clock kernel with a 15 clock 
epilog. Because four channels are processed by the loop, this routine manages to apply 
both threshold and a rough 75 ns time cut in just one clock cycle per channel. 
 
OOOOTTEElliimmiinnaattee(()) and almost all functions use custom macros ssttaarrttcclloocckk/ssttooppcclloocckk to keep 
track of what runs in parallel with what. Everything with a cclloocckk((  NN  )) macro will occur in 
clock cycle N between the ssttaarrttcclloocckk and ssttooppcclloocckk macros. These and all other custom 
macros use the m4 macro language [23] and make particular use of diversion streams for 
storing instructions for the various clock cycles. 
 
This is also one of a few functions that use the custom macros ssttaarrttlloooopp/~~ssttoopplloooopp to 
generate loops with loop variables. This allows the NN in the cclloocckk((  NN  )) calls to be 
specified as a function of the pass through the unrolled loop, as well as to change the shift 
values CCOOUUNNTT11/CCOOUUNNTT22 and the bitmap words BBIITTMMAAPP11/BBIITTMMAAPP22 during each pass. 
 
 

MMaarrkkNNeeiigghhbboorrss assembly function 
1. Reads the existing bitmap. 
2. Marks neighbors for hits as required. Also masks out bad channels. 
3. Updates the existing bitmap. 

 
Performance: 20 DSP clocks per neighbor width (interrupt safe) 
 
MMaarrkkNNeeiigghhbboorrss(()) is a simple function that shifts bitmap words left and right and bitwise 
ORs them back in. Multiple iterations of this function can mark multiple neighbors, and 
even one invocation has the effect of bridging gaps caused by removed bad channels. 
There is also an option to select transverse mode so that neighbors are not marked across 
layer boundaries (the six word bitmap represents all four transverse layers). 
 
 

PPaarrsseeBBiittmmaapp assembly function 
1. Reads four time slices from the input buffer and the existing bitmap. 
2. Associates bitmap hits with actual samples from the timeslices. 
3. Stores a linked list of samples and a buffer of channel offsets. 

 
Performance: 7 * (# of hits) + 28 DSP clocks (interrupt safe) 
 
PPaarrsseeBBiittmmaapp(()) is a very typical two-pass loop, meaning that the routine parallels with 
itself halfway through. As with most of the assembly functions, many client-preserved 
registers (A10-A15, B10-B15, and B3) must be saved to memory before being used. 
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FFiinnddPPeeaakk assembly function 
1. Reads the existing linked list of samples, the channel offsets, and the calibration 

constants and saturation values for each channel. 
2. Identifies and records clusters along with numerators and denominators for the 

three channels in each cluster to be used for time computation. 
3. Stores a linked list of clusters with numerators and denominators. 

 
Performance: 10 * (# of hits) + 28 DSP clocks (interrupt safe) 
 
This is another two-pass loop that has the added feature of using custom macros 
ssttaarrttppaassss/~~ssttooppppaassss to produce two nearly-identical functions FFiinnddPPeeaakkBB(()) and 
FFiinnddPPeeaakkCC(()). The section in the oonn__ppaassss(()) macro call differs for each pass of the macro 
and allows the two functions to do slightly different things as needed. In this case, the 
difference is which sample (B or C) is used to determine the largest channel for time 
estimation. 
 
 

CCaallccuullaatteeTTiimmee assembly function 
1. Reads the existing linked list of clusters and the list of time offsets for channels. 
2. Calculates a time for each cluster using the largest channel and matches it to the 

times based on the side channels. 
3. Updates the linked list of clusters to include the times with a bit indicating 

whether the time computation succeeded. 
 
Performance: 14 * (# of clusters) + 34 DSP clocks (interrupt safe) 
 
CCaallccuullaatteeTTiimmee(()) is another two-pass loop with multiple versions produced using 
ssttaarrttppaassss/~~ssttooppppaassss. To speed calculation, the central time is computed to a fixed 
precision of 12 bits by shifting both numerator and denominator before dividing. To 
avoid doing this expensive operation three times, the side channels are verified to be 
within a window of the central time by cross-multiplying. 
 
 

CCuuttTTiimmee assembly function 
1. Reads the existing linked list of clusters. 
2. Applies a cut to reduce the acceptance window to a programmable amount. 
3. Updates the linked list of clusters to remove the cut clusters. 

 
Performance: 3 * (# of clusters) + 7 DSP clocks (interrupt safe) 
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CCuuttTTiimmee(()) is another unrolled function that uses startloop/~stoploop. Unlike 
OOOOTTEElliimmiinnaattee(()), however, this function does not run for a fixed number of loop 
iterations. There are enough copies of the loop to handle the largest number of loop 
iterations that might be needed, and a decreasing counter tells us when to branch back to 
the return address. This "run out" technique allows a small kernel (less than the 6 clocks 
it takes to branch and wait for delay slots) to be implemented without dealing with 
complicated multiple-branching techniques. 
 
 

AAddddBBiittmmaapp assembly function 
1. Reads the existing linked list of clusters. 
2. Computes cluster bitmap words and determines which pairs of words are non-

zero. 
3. Updates the linked list of clusters to include the bitmap words and BitmapPresent 

bits. 
 
Performance: 14 * (# of clusters) + 36 DSP clocks (interrupt safe) 
 
AAddddBBiittmmaapp(()) is another two-pass loop, but this one makes extensive use of lookup tables 
(LUTs) to compute the bitmaps quickly. LUT techniques are useful for many situations 
such as bit counting and reversal, but it can be difficult to balance the trade off between 
speed and LUT memory usage. 
 
 

LLiinnkkLLiisstt assembly function 
1. Reads the existing linked list of clusters and the existing linked list of samples. 
2. Splices the linked lists so that cluster words come before the corresponding 

samples. 
3. Updates the linked lists of samples and clusters to form a single list. 

 
Performance: 6 * (# of clusters) + 8 DSP clocks (interrupt safe) 
 
LLiinnkkLLiisstt(()) is a very straightforward two-pass loop. The power of LLiinnkkLLiisstt(()) is in the hand 
calculations used to decide which linked list pointers need to be modified and to what 
value. These formulae are simply churned through and the corresponding values are 
written. This function also uses a special LUT stored in a single word...shifting by a 
variable amount allows one of the many small bit patterns to be extracted. 
 



 43 

OOuuttppuuttRReessuullttss assembly function 
1. Reads the existing linked list of clusters with samples. 
2. Generates the final output by walking the linked list. 
3. Stores the final output in the output buffer. 

 
Performance: 3 * (# of hits) + 6 * (# of clusters) + 15 DSP clocks (interrupt safe) 
 
OOuuttppuuttRReessuullttss(()) has to perform a task that is normally very inefficient on a deeply 
pipelined processor: walking a linked list. Because of the four delay slots after each load 
instruction, it is not possible to walk a standard linked list in less than five clocks per 
node. To get around that, we use a "pipelined" linked list that effectively stores the 
pointer to the node after the next. This allows the code to hide the delay slots properly. 
To further simplify things given the typical use of large contiguous sections of memory, a 
relative pointer is used that specifies how many bytes to skip in addition to the three 
words normally advanced by. These skip words are zero when the next node follows 
immediately and need only be non-zero in the node two before a splice. 
 
This routine uses the more traditional multiple branch technique to get a loop half the size 
of the usual branch plus delay slots. Because walking such a custom linked list presents 
the risk of wandering off into random memory on a fatal glitch, the routine aborts after 
about 500 words are copied. 
 
 

C++ 
In addition to the assembly code, it is important that the C++ code connecting these 
functions be as efficient as possible. Separately-compiled functions like FFaassttCCooppyy<<>>(()) 
and FFaassttCCooppyySSttrriiddee<<>>(()) are used to avoid problems pipelining loops with vvoollaattiillee 
reads/writes, and every effort is made to get all loops to pipeline when possible. 
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Calibration array 
SSttaattuuss..BBaassiicc..CCaalliibbrraattiioonn is a pointer to a 1 kW buffer used to store Decoder initialization 
information. The format of this information for the SPU Decoder is: 
 

• Bitmap of bad channels 
6 words, unsigned 
Any values are allowed 

 
• Precision layer number 

1 word, unsigned 
0-3 if precision, 0 if transverse 

 
• Neighbor count 

Number of times to invoke MMaarrkkNNeeiigghhbboorrss(()) function 
1 word, unsigned 
No more than four times permitted 

 
• Minimum denominator to allow divide for time 

A denominator equal to minimum will fail 
1 word, unsigned 
Must be between 1 and 0x7FFFFFFF, inclusive 

 
• Final time window 

Half-width of the final time cut window in ns, edges fail 
1 word, unsigned 

 
• Cross-check time window 

Determines the half-width of the cross-comparison time window, edges fail 
1 word, unsigned 
See below for format and restrictions on the value 

 
• Large cross-check time window boolean 

Helps determine the half-width of the cross-comparison time window 
1 word, unsigned 
Must be 0 (false) or 1 (true) 

 
• Precision DPU boolean 

Indicates whether the DPU is precision (true) or transverse (false) 
1 word, unsigned 
Must be 0 (false) or 1 (true) 

 
• Threshold array 

Threshold for OOOOTTEElliimmiinnaattee(()) test, equal to threshold fails 
192 halfwords, unsigned 
Must be in same order as channels in the timeslice 



 45 

• Saturation array 
Used to decide if sample is saturated low (low halfword) or high (high halfword) 
Equal to saturation value fails and cannot be used for time computation 
192 words (each word is two packed signed halfwords) 
Must be in same order as channels in the timeslice 

 
• Special zero word 

Needed to follow saturation array with a zero value 
1 word, unsigned 
Must be zero 

 
• Calibration array 

Used for linear calibration of nominally largest sample before comparing 
Pedestal in low halfword, scale factor in high halfword 
192 words (each word is two packed signed halfwords) 
Must be in same order as channels in the timeslice 

 
• Special zero word 

Needed to follow calibration array with a zero value 
1 word, unsigned 
Must be zero 

 
• Time adjustment in phase B array 

Used to adjust computed times by a signed halfword in ns 
192 halfwords, signed 
Must be in same order as channels in the timeslice, used for phase B 
Absolute value must be no more than 1000 

 
• Time adjustment in phase C array 

Used to adjust computed times by a signed halfword in ns 
192 halfwords, signed 
Must be in same order as channels in the timeslice, used for phase C 
Absolute value must be no more than 1000 

 
 
The cross-check time window (used to compare side channel times with the central 
cluster time) has a complicated format due to restrictions imposed by the assembly code. 
The lower halfword of the time window is a shift factor s, while the upper halfword is a 
multiply factor m. The requirement is that m must be between 0 and 8 inclusive. 
 
When the large cross check time window boolean is true, the window half-width in ns is 

( )sm <<⋅64 . When the large cross check time window boolean is false, the window 
half-width in ns is ( )sm >>⋅64 . The shifting is done this way to keep the values small 
enough to fit in 32 bit words no matter what shift value is needed. 
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RPU 

Neutron rejection algorithm 
The RPU is the first point at which all four layers of the chamber are available together. 
This offers the option to reject neutrons and photons by looking for tracks in the chamber. 
The algorithm for this must be simple and scale well with the number of clusters. The 
occupancy is still low, but the worst-case performance can blow up severely if the scaling 
is bad because of the 960 channels of data possible in the RPU. 
 
Neutrons and photons typically only deposit their energy in one layer, while muons pass 
through all four. Because of this, a cluster that has a corresponding cluster in another 
layer is more likely to be a muon and less likely to be a neutron or photon. We keep any 
cluster that has a corresponding cluster in any of the three other layers, and reject only 
those clusters that have no corresponding cluster in any layer. To allow for track 
inclination, corresponding clusters in neighboring layers must either overlap or be 
touching each other at the edges. For example, a cluster in channels 5-12 would match 
with a cluster in channels 13-19 in the next layer. If the layers are separated by one 
intervening layer, then there can be a single channel gap between the two clusters. For 
example, a cluster in channels 5-12 would match with a cluster in channels 14-19. 
Finally, if there are two intervening layers than a gap of two channels is allowed. 
 
The neutron rejection algorithm easily keeps all muons while rejecting approximately 
94% of neutrons and photons [18]. After neutron rejection, the clusters are formatted and 
output as one half of an ATLAS standard Event fragment. 
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Neutron-rejected data format 

Events 
 

RPU status headerData 

Common Header

Normal Event Error Event Discard Event 

 

Common header 
 

0 0 0 0  M  

3 M
  

2 M
  

1 M
  

0  0 0 0 0  T
  

3 T
  

2 T
  

1 T
  

0   S
  

15S
  

14S
  

13S
  

12 S
  

11S
  

10S
  

9 S
  

8  S
  

7 S
  

6 S
  

5 S
  

4  S
  

3 S
  

2 S
  

1 S
  

0  
• M = Module ID 
• T = Type of Event (0 = Normal, 1 = Discard, 2 = Error) 
• S = Size of Event (in words, including the common header and ghost words) 

Data 

Cluster 2

Cluster 1

Cluster 0

...

C  

7 C
  

6 C
  

5 C
  

4  C
  

3 C
  

2 C
  

1 C
  

0  r
  

1 r
  

0 T P  F
  

3 F
  

2 F
  

1 F
  

0   D
  

15D
  

14D
  

13D
  

12 D
  

11D
  

10D
  

9 D
  

8  D
  

7 D
  

6 D
  

5 D
  

4  D
  

3 D
  

2 D
  

1 D
  

0

C  

31C
  

30C
  

29C
  

28 C
  

27C
  

26C
  

25C
  

24 C
  

23C
  

22C
  

21C
  

20 C
  

19C
  

18C
  

17C
  

16  C
  

15C
  

14C
  

13C
  

12 C
  

11C
  

10C
  

9 C
  

8  C
  

7 C
  

6 C
  

5 C
  

4  C
  

3 C
  

2 C
  

1 C
  

0

A  

31A
  

30A
  

29A
  

28 A
  

27A
  

26A
  

25A
  

24 A
  

23A
  

22A
  

21A
  

20 A
  

19A
  

18A
  

17A
  

16  A
  

15A
  

14A
  

13A
  

12 A
  

11A
  

10A
  

9 A
  

8  A
  

7 A
  

6 A
  

5 A
  

4  A
  

3 A
  

2 A
  

1 A
  

0

 
• A = SCA addresses (first timeslice in high byte) 
• C = Cluster counts (first precision in high byte of first word) 
• r = Reserved (may have any value) 
• T = Trigger type (priority) 
• P = Trigger/sampling phase (0 = sample B closer to nominal peaking time, 1 = C) 
• F = First bit summary (first timeslice in high bit) 
• D = Number of data words that follow in clusters 
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Cluster 
 

Sample words

Cluster words

 

Cluster words 
 

0 0 0 F  T  

11T
  

10T
  

9 T
  

8  T
  

7 T
  

6 T
  

5 T
  

4  T
  

3 T
  

2 T
  

1 T
  

0   W
  

15W
  

14W
  

13W
  

12 W
  

11W
  

10W
  

9 W
  

8  W
  

7 W
  

6 W
  

5 W
  

4  W
  

3 W
  

2 W
  

1 W
  

0

0 0 0 0  0 0 0 0  0 0 0 0  0 0 0 S   P  

2 P
  

1 P
  

0 E  M L
  

1 L
  

0 D  C
  

7 C
  

6 C
  

5 C
  

4  C
  

3 C
  

2 C
  

1 C
  

0

 
• S = Size bit (big or small CSC chamber) 
• P = Phi angle 
• E = Eta (endcap) 
• M = Multilayer (0) 
• L/D/C = Layer/Direction/Channel number (D = 0 for precision, 1 for transverse) 
• F = Failed to compute time (time will be 0) 
• T = Time (signed, in nanoseconds) 
• W = Width of cluster (number of sample word pairs) 

Sample words 
 

C  

15C
  

14C
  

13C
  

12 C
  

11C
  

10C
  

9 C
  

8  C
  

7 C
  

6 C
  

5 C
  

4  C
  

3 C
  

2 C
  

1 C
  

0   D
  

15D
  

14D
  

13D
  

12 D
  

11D
  

10D
  

9 D
  

8  D
  

7 D
  

6 D
  

5 D
  

4  D
  

3 D
  

2 D
  

1 D
  

0

A  

15A
  

14A
  

13A
  

12 A
  

11A
  

10A
  

9 A
  

8  A
  

7 A
  

6 A
  

5 A
  

4  A
  

3 A
  

2 A
  

1 A
  

0   B
  

15B
  

14B
  

13B
  

12 B
  

11B
  

10B
  

9 B
  

8  B
  

7 B
  

6 B
  

5 B
  

4  B
  

3 B
  

2 B
  

1 B
  

0

 
• A = sample A 
• B = sample B 
• C = sample C 
• D = sample D 
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RPU status header 
 

SPU status header (SPU 4)

SPU status header (SPU 3)

SPU status header (SPU 2)

SPU status header (SPU 1)

SPU status header (SPU 0)

 

SPU status header 
 

Status words (timeslice D)

Status words (timeslice C)

Status words (timeslice B)

Status words (timeslice A)

 

Status words 

S  

31S
  

30S
  

29S
  

28 S
  

27S
  

26S
  

25S
  

24 S
  

23S
  

22S
  

21S
  

20 S
  

19S
  

18S
  

17S
  

16  S
  

15S
  

14S
  

13S
  

12 S
  

11S
  

10S
  

9 S
  

8  S
  

7 S
  

6 S
  

5 S
  

4  S
  

3 S
  

2 S
  

1 S
  

0

S  

31S
  

30S
  

29S
  

28 S
  

27S
  

26S
  

25S
  

24 S
  

23S
  

22S
  

21S
  

20 S
  

19S
  

18S
  

17S
  

16  S
  

15S
  

14S
  

13S
  

12 S
  

11S
  

10S
  

9 S
  

8  S
  

7 S
  

6 S
  

5 S
  

4  S
  

3 S
  

2 S
  

1 S
  

0

S  

31S
  

30S
  

29S
  

28 S
  

27S
  

26S
  

25S
  

24 S
  

23S
  

22S
  

21S
  

20 S
  

19S
  

18S
  

17S
  

16  S
  

15S
  

14S
  

13S
  

12 S
  

11S
  

10S
  

9 S
  

8  S
  

7 S
  

6 S
  

5 S
  

4  S
  

3 S
  

2 S
  

1 S
  

0

S  

31S
  

30S
  

29S
  

28 S
  

27S
  

26S
  

25S
  

24 S
  

23S
  

22S
  

21S
  

20 S
  

19S
  

18S
  

17S
  

16  S
  

15S
  

14S
  

13S
  

12 S
  

11S
  

10S
  

9 S
  

8  S
  

7 S
  

6 S
  

5 S
  

4  S
  

3 S
  

2 S
  

1 S
  

0

S  

31S
  

30S
  

29S
  

28 S
  

27S
  

26S
  

25S
  

24 S
  

23S
  

22S
  

21S
  

20 S
  

19S
  

18S
  

17S
  

16  S
  

15S
  

14S
  

13S
  

12 S
  

11S
  

10S
  

9 S
  

8  S
  

7 S
  

6 S
  

5 S
  

4  S
  

3 S
  

2 S
  

1 S
  

0

S  

31S
  

30S
  

29S
  

28 S
  

27S
  

26S
  

25S
  

24 S
  

23S
  

22S
  

21S
  

20 S
  

19S
  

18S
  

17S
  

16  S
  

15S
  

14S
  

13S
  

12 S
  

11S
  

10S
  

9 S
  

8  S
  

7 S
  

6 S
  

5 S
  

4  S
  

3 S
  

2 S
  

1 S
  

0

 
• S = Status words from BPI 

Ghost words 
At the end of Events can be added one or more ghost words. The presence of these words 
can be inferred by comparing the reported total size with the actual size of any data words 
and known headers. These words are not used in normal running and should be ignored 
by ATLAS software. The primary use of these words is to aid debugging during 
commissioning. 
 
The current ghost words are the Status header. 
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Implementation 
More so than even the SPU, the greatest challenge of the RPU Decoder is controlling the 
worst-case performance. Because of the low occupancies, there is a huge difference 
between the typical Event and the worst-case Event. It was important during design to 
allow the case of all channels hit to be performed efficiently because this can happen if an 
anode wire is struck and gets an induced charge. Thanks to extensive use of cluster-based 
algorithms, the worst case on both the SPU and RPU is the minimum number of channels 
per cluster with a gap of one channel between clusters. There is only one assembly 
language routine used in processing on the RPU: 
 

NNeeuuttrroonnRReejjeecctt assembly function 
1. Reads the clusters and samples sent from the SPU. 
2. Applies neutron rejection to all clusters in all layers. 
3. Stores passing clusters to the output buffer. 

 
Performance: 2 * (# of hits) + 11 * (# of clusters) + 39 DSP clocks (disables interrupts) 
 
NNeeuuttrroonnRReejjeecctt(()) is the most complicated single assembly language function in the DPU. 
It is a three-pass loop that branches out to a run-out routine to copy the cluster's samples 
when it passes neutron rejection. Thanks to the effort that went into this function, the 
RPU can handle even the absolute worst case in less than 10,000 DSP clocks as required. 
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Calibration array 
SSttaattuuss..BBaassiicc..CCaalliibbrraattiioonn is a pointer to a 1 kW buffer used to store Decoder initialization 
information. The format of this information for the RPU Decoder is: 
 

• Precision overlap count 
Determines how much track inclination is allowed in precision layers 
1 word, unsigned 
See below for format and restrictions on the value 

 
• Transverse overlap count 

Determines how much track inclination is allowed in transverse layers 
1 word, unsigned 
See below for format and restrictions on the value 

 
• Channel mask 

Contains bits to be bitwise ORed into all channel numbers 
1 word, unsigned 
Only bits 1 (0x2) through 16 (0x10000) may be set 

 
 
The precision and transverse overlap counts tell the RPU how many extra bits to set in 
the bitmaps before bitwise ANDing with the cluster bitmap and looking for overlap. 
When the overlap count is zero, clusters must have actual overlap in order to be 
considered a match. When the overlap count is one, clusters that would touch without 
overlap if placed in the same layer will match. When the overlap is two or more, then 
clusters that would have a gap of the overlap count minus one if placed in the same layer 
will match. The only value allowed for the overlap count is one, but this can be changed 
with a small modification to the RPU.h file. 
 
The value sent in the overlap count is used for neighboring layers. If there is one 
intervening layer, twice the overlap count is used. If there are two intervening layers, 
three times the overlap count is used. Thus the overlap count is a measure of how much 
the track can be inclined. 
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Implementation 

File Layout 

Base Files 

main.cpp 
 

Starting point, high-
level routines 

common.h/.cpp 
 

Included by all files, 
also includes shared.h 

shared.h 
 

Included by all files and 
by the HPU 

fault.h 
 

List of all Fault codes in 
C++ macros 

 

Driver Files 

DMA.h/.cpp 
 

TTCChhaannnneell class for controlling 
DMA channels 

FPGA.h/.cpp 
 

Functions for initializing FPGAs 
and reading/writing registers 

Timer.h/.cpp 
 

TTTTiimmeerr class for measuring time 
intervals 

Platform.h 
 

Constants that specify memory 
extents for the current DSP type 

mini_dpu.h 
 

TTMMiinniiDDPPUU class for XFPGA init, 
included by FPGA.h/.cpp 

6202.cmd/6203.cmd 
 

Linker command files for 6202 
and 6203 DSPs 

 

Hardware Abstraction Layer (HAL) Files 

Status.h 
 

Status struct access and 
Basic initialization 

Policy.h 
 

Policy system access 
and initialization 

Parameter.h 
 

Parameter system access 
functions 

Response.h 
 

Response buffer 
functions for decoders 

Queue.h 
 

Input/output queue 
classes 

PriorityQueue.h 
 

TTPPrriioorriittyyQQuueeuuee  class for 
Tasks 

Heap.h 
 

TTHHeeaapp class for Task 
memory 

HAL.cpp 
 

Instance definitions for 
the HAL headers above 

struct.h 
 

Declaration of TTSSttaattuuss 
struct, included by HPU 

Util.h/.cpp 
 

LED and performance 
monitor utilities 

simulate.h 
 

Functions used to fill 
input buffers for testing 

HALControl.h/.cpp
 

TTCCoonnttrrooll interface for 
the HAL and Drivers 
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Policy\policies.h 
 

Point of declaration for 
all Policy modes 

Policy\include.h 
 

Point of inclusion for all 
Policy mode headers 

Policy\dt_input.h 
 

Input data type Policy 
mode header 

Policy\dt_output.h 
 

Output data type Policy 
mode header 

 

Queue\input.h 
 

UUppddaattee(()) functions for 
input 

Queue\input.cpp 
 

IInniittiiaalliizzee(())/TTeerrmmiinnaattee(()) 
functions for input 

Queue\output.h 
 

UUppddaattee(()) functions for 
output 

Queue\output.cpp 
 

IInniittiiaalliizzee(())/TTeerrmmiinnaattee(()) 
functions for output 

 

Data System Files 

DataControl.h/.cpp 
 

TTCCoonnttrrooll interface for 
the Data system 

Data.h/.cpp 
 

Data system main 
functions 

decoder.h 
 

TTDDeeccooddeerr base class for 
Decoders 

enum.h 
 

Enum of all Decoders, 
included by HPU 

 

decoders\decoders.h 
 

Point of declaration for all 
Decoders 

decoders\include.h
 

Point of inclusion for 
all Decoder headers 

decoders\SPU.h 
 

Decoder class for SPU 
Decoder 

decoders\RPU.h 
 

Decoder class for RPU 
Decoder 

decoders\Timeslice.h 
 

Early test version of a 
timeslice Decoder 

decoders\SIT.h 
 

System Integration Test 
Decoders 

decoders\Beamtest.h 
 

Decoders used during the 
beam test 

decoders\DXTest.h
 

Decoders used for DX 
testing 

 

Command System Files 

CommandControl.h/.cpp 
 

TTCCoonnttrrooll interface for the 
Command system 

Command.h/.cpp
 

Command system 
main functions 

function.h 
 

TTFFuunnccttiioonn base class 
for Functions 

fenum.h 
 

Enum of all Functions, 
included by HPU 

 

functions\functions.h 
 

Point of declaration for all 
Functions 

functions\include.h 
 

Point of inclusion for all Function 
headers 

functions\Basic.h 
 

Basic functions and ones used to 
control the Scheduling system 
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Scheduling System Files 

SchedulingControl.h/.cpp 
 

TTCCoonnttrrooll interface for the 
Scheduling system 

Scheduling.h/.cpp
 

Scheduling system 
main functions 

task.h 
 

TTTTaasskk base class for 
Tasks 

tenum.h 
 

Enum of all Tasks, 
included by HPU 

 

tasks\tasks.h 
 

Point of declaration for all Tasks 
 

tasks\include.h 
 

Point of inclusion for all Task 
headers 

tasks\Hardware.h 
 

Tasks used to monitor hardware 
such as temperature 

 

HPU Files 

common.h 
 

Wrapper for shared.h 
 

Data.h 
 

Wrapper for Data\ 
decoders\decoders.h 

Command.h 
 

Wrapper for Command\ 
functions\function.h 

Scheduling.h 
 

Wrapper for Scheduling\ 
tasks\tasks.h 

Status.h 
 

Wrapper for 
HAL\struct.h 

gui.h 
 

Wrapper for fault.h 
 

Copies of:  shared.h   fault.h   HAL\struct.h 
Data\decoders\decoders.h 

Command\functions\function.h 
Scheduling\tasks\tasks.h 
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Status Structure 
The Status structure is a C++ POD struct used to communicate with the HPU. There are 
three main sections: 

Basic Section 
Version information 
Initialization control 
Boot information 
Hardware configuration 
Mode configuration 
Task configuration 
Mode overrides 
Data-Scheduling-Command priority configuration 
Orders 
Warnings 
Faults 
Run configuration 

Processing Section 
Event processing counters 
Time information 
Discard counters 
Event output counters 
Performance counters 
Temperature monitoring 

Buffer Section 
Parameter set pointers 
Response buffer pointer and index 
DIB/DOB priority information 
Command buffer pointer and priority 
Scheduling priority 
 
The struct is accessible by both the DPU and the HPU (via DPU Control). A comment is 
made for each item defining which DSP is allowed to read/write at what stage of 
operation to prevent conflicts. 
 
In retrospect, some sort of double buffering would have been preferable to allow the HPU 
to get a consistent snapshot of various counters and flags that are constantly being 
updated by the DPU. Fortunately this functionality has not been needed, primarily due to 
the use of the Command and Response buffers for most critical communications. 
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Policy System 
The Policy system maintains a small database of configuration options based on input 
and output data types. For each possible input or output types, there are several values 
stored that describe the data and how it fits into the input/output buffers: 

Input 
IInnppuuttEEvveennttLLeennggtthh Number of Packets per Event 
IInnppuuttMMaaxxPPaacckkeettLLeennggtthh Maximum number of Frames per Packet 
IInnppuuttFFrraammeeSSiizzee Size of a Frame, in words 
IInnppuuttYYeelllloowwBBaarr Threshold for setting priority Yellow (# of unused Frames) 
IInnppuuttRReeddBBaarr Threshold for setting priority Red (# of unused Frames) 
IInnppuuttTTrraannssffeerrCCoouunntt[[  44  ]] Number of events to DMA in at various priorities 

Output 
OOuuttppuuttEEvveennttLLeennggtthh Number of Packets per Event 
OOuuttppuuttMMaaxxPPaacckkeettLLeennggtthh Maximum number of Frames per Packet 
OOuuttppuuttFFrraammeeSSiizzee Size of a Frame, in words 
OOuuttppuuttYYeelllloowwBBaarr Threshold for setting priority Yellow (# of unused Frames) 
OOuuttppuuttSSkkiippLLeennggtthh Used to control padding and sending of size word in output 
 
For every possible data type, there is a set of constants in the 
DDPPUU::::PPoolliiccyy::::PPrriivvaattee::::<<nnaammee  ooff  ddaattaa  ttyyppee>> namespace that corresponds to the above 
values. During initialization, these are copied to a set of read-only variables in the 
DDPPUU::::PPoolliiccyy::::PPuubblliicc namespace. This way, a Decoder can choose to use the constant 
values in the private namespace or the run-time values in the public namespace. Using 
the public variables is more flexible, but using the constants in the private namespaces 
allows for maximum performance for time-critical Decoders. Decoders that do not use 
the public values will report whether they are compatible with the current values and not 
be loaded during the run if they are not. 
 
The read-only variables are actually instances of a template class TTEEnnttrryy that takes the 
type of the variable as its template parameter. The cast operator for that type is 
overloaded to allow the instance to act like a variable of that type when read, while 
assignment is restricted to the Policy system initialization functions. 
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Input/Output Queues 
One of the most important aspects of a clean DPU software design is separation of buffer 
management from data processing. To that end, the input and output queue classes handle 
all internal aspects of data flow and present a simple interface to Decoders. Furthermore, 
the layout of the generic event is designed to decouple data flow from data processing by 
making the input/output queues independent of the data type. 
 
At first glance, the need for a single interface to multiple buffer operational modes 
(different external sources, variable vs. fixed-length events) suggests the use of virtual 
functions. More specifically, the Template Method Pattern [22] would allow the sharing 
of common code with virtual functions to perform the mode-specific operations such as 
setting up for output or checking whether an entire event is available. However, this has 
two main problems: the Template Method Pattern would use one virtual function call per 
function requiring specialization, and it would also require dynamic memory allocation of 
an instance of one of the derived classes in the queue hierarchy. This contradicts our 
desire for maximum performance and to avoid dynamic memory allocation. As will be 
seen below, the solution is to use specialization of template functions in place of virtual 
functions and use a single member function pointer to duplicate the virtual function call 
mechanism without dynamic memory allocation. 
 

TQueue
ReadIndex
WriteIndex

Size

TIQSetup
Initialize()
Update()

Terminate()

TOQSetup
Initialize()
Update()

Terminate()

TInputQueue
GetIQSetup()

pop()

TOutputQueue
GetOQSetup()

push()

 
Figure 27: Class hierarchy for the input/output queues 
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The base class for both input and output queues is a struct called TTQQuueeuuee. This does not 
reflect commonality of interface but rather implementation, so protected inheritance is 
used. The derived classes, TTIIQQSSeettuupp and TTOOQQSSeettuupp, contain the input/output queue-
specific data members and most of the functionality of the queues. As with other parts of 
the DPU software, these classes support IInniittiiaalliizzee(()), UUppddaattee(()), and TTeerrmmiinnaattee(()), and most 
of the work is done in UUppddaattee(()). In particular, UUppddaattee(()) is responsible for keeping data 
flowing and getting prepared to pass the next event through the Decoder that requests it. 
 
Logically one might expect to see ppuusshh(()) and ppoopp(()) found in these classes, but this opens 
up a problem. The triplet of IInniittiiaalliizzee(()), UUppddaattee(()), and TTeerrmmiinnaattee(()) (and their helper 
functions) are only supposed to be used by HAL Control during the corresponding 
phases, but these would also be available to every Decoder with no way to detect a 
misuse. This same problem was even more serious in the design of the DMA channel 
class TTCChhaannnneell, and the solution there was to use protected inheritance to hide the 
interface. For the queue classes, this means using protected inheritance to derive the leaf 
classes TTIInnppuuttQQuueeuuee and TTOOuuttppuuttQQuueeuuee from TTIIQQSSeettuupp and TTOOQQSSeettuupp, respectively. 
These leaf classes are where functions like push and pop reside, and a single public 
function GGeettIIQQSSeettuupp(())/GGeettOOQQSSeettuupp(()) provides a reference to the protected base so HAL 
Control can access it from the instances of TTIInnppuuttQQuueeuuee/TTOOuuttppuuttQQuueeuuee we create. The 
important thing to note is that this does not prevent intentional misuse, but rather 
produces a compile-time error if there is any unintentional use. This is less significant for 
the queue classes, but proved invaluable in the DMA channel classes where catching such 
misuse revealed a design flaw in how certain initialization was being done. 
 
The question remains of how to implement the above functions. Essentially, the goal is to 
make a single indirect function call through a function pointer during UUppddaattee(()) and leave  
helper functions and ppuusshh(())/ppoopp(()) as ordinary function calls. Making ppoopp(()) an ordinary 
call is done by filling a data structure during UUppddaattee(()) with everything needed to find the 
next Event and pop some or all Packets off. The ppuusshh(()) function is even simpler as the 
information it needs is provided by the buffer pointers and the function call parameters. 
 
The function TTeemmppllaatteeUUppddaattee(()) takes care of the work to be done in UUppddaattee(()). This is a 
template function whose template parameters are an enum for the buffer type and a bool 
for whether the Events are fixed or variable-length. TTeemmppllaatteeUUppddaattee(()) can be specialized 
completely if necessary, but we can also follow the Template Method Pattern and write a 
single version of the code that calls helper template functions that get specialized instead. 
The only thing remaining is storing a pointer to TTeemmppllaatteeUUppddaattee(()) during IInniittiiaalliizzee(()) and 
calling that in our UUppddaattee(()) function. Pointers to member functions like 
TTeemmppllaatteeUUppddaattee(()) generally incur size overhead in order to accommodate things like 
virtual functions, and on the TI DSP these pointers are two words instead of one. To 
avoid having to load two words during the indirection, we make a friend template 
function ss__UUppddaattee(()) that is passed a pointer to the queue instance and calls the 
corresponding TTeemmppllaatteeUUppddaattee(()) function on it. A pointer to one of the specializations of 
ss__UUppddaattee(()) is stored in pp__UUppddaattee and called by UUppddaattee(()) by passing the tthhiiss pointer. This 
gives all the advantages of the Template Method Pattern with a single virtual function 
call emulated with a function pointer to avoid dynamic memory allocation. 



 59 

Task Priority Queues 

Priority Queues 
A priority queue is a container that sorts its elements and presents only the highest 
priority item for removal. This is ideal for use in the Scheduling System for holding Task 
Capture and Service requests. 
 
Priority queues are generally implemented using a partially sorted binary tree called a 
binary heap. Each element can have up to two children with the condition that an element 
is of equal or greater priority than either child. A binary heap with N items occupies the 
lowest N elements of the array containing it and grows upwards as new items are added. 

Standard Template Library 
The C++ Standard Template Library (STL) contains an adaptor called pprriioorriittyy__qquueeuuee that 
can be used to convert a container class (such as vveeccttoorr) into a priority queue [8]. There 
are several problems with using this in the DPU software: 

• All the container classes, including vveeccttoorr, use dynamic memory allocation 
• Half of the memory will be wasted if there are separate Capture and Service 

priority queues because a given Task will have a request in one or the other but 
never both at the same time 

• The TI DSP libraries do not include the STL 

Custom Priority Queue 
To resolve this, we need a custom version of pprriioorriittyy__qquueeuuee that has two features: 

• No use of dynamic memory allocation 
• Shares memory space between the Capture and Service queues 

 
The basis for this new class, called TTPPrriioorriittyyQQuueeuuee, is the implementation of the STL 
pprriioorriittyy__qquueeuuee from a free open-source library called STLPort [40]. Instead of relying on 
an STL container class, this adaptor is modified to use a fixed-size array of memory and 
report a Fault if the array overflows. 
 
To address the issue of shared memory, we duplicate the code for managing the binary 
heap and reverse it so it controls a heap starting at the last element of the array and 
growing downward. Combining these two versions gives us a two-sided binary heap that 
will inherently allow memory to be shifted between the Capture and Service priority 
queues automatically. 
 

Free SpacePriority Queue A
Item 0

Priority Queue A
Item 1

Priority Queue B
Item 0

Priority Queue B
Item 1

 

Figure 28: Allocation of memory between the two priority queues with free space between 
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Task Heap 
The one place where dynamic memory allocation is needed is the Scheduling System to 
allow for runtime creation of Tasks. Unfortunately the built-in C++ nneeww operator is 
optimized for size efficiency and cannot meet our real-time constraints [41]. The simplest 
memory allocation algorithm we could use is to partition a large buffer into fixed-size 
chunks large enough to hold the largest possible Task. This would work fine if most 
Tasks were of comparable size, but we expect to have small Tasks for monitoring a single 
quantity and large Tasks for Event capture and histogramming. A one-size-fits-all 
approach would be very inefficient. Having two buffers using two different sized chunks 
could work, but we might find ourselves with no free memory in one buffer and plenty of 
free memory in the other. What we would like is to find a solution similar to the double-
ended priority queue that would allow us to collocate the small and large chunks while 
allowing for inevitable fragmentation of memory. 
 
The solution is to choose the large chunk size to be a power-of-two multiple of the small 
chunk size (for efficiency we choose both chunk sizes to be powers of two). The buffer is 
divided into large chunks that can be allocated for larger Tasks. If a smaller Task is 
needed, a large chunk can be subdivided into several small chunks (the ratio of the two 
sizes) and those small chunks can be handed out. 
 

Free Space Free Space
Free SpaceFree Space

Small Chunk

Small Chunk

Small Chunk

Large Chunk Large Chunk

Small Chunk

 

Figure 29: A typical allocation of large and small chunks in the Task heap 

The large chunks are managed by a set of TTHHeeaappNNooddee instances that contain a bitmap 
indicating which contained small chunks are in use when subdivided. These are created in 
a static array and the index in the array is the index of the corresponding large chunk of 
memory being managed. Each TTHHeeaappNNooddee instance stores previous/next indices and they 
are initially connected to form a doubly linked list that contains all free large chunks. 
When a large chunk is needed, the head of this list is removed and the corresponding 
chunk is given out for use. When the first small chunk is needed, the first small chunk in 
the head of the free large chunk list is marked as used in the bitmap and the TTHHeeaappNNooddee 
instance is moved to a new list for large chunks with one small chunk in use. There are 
similar lists for large chunks with two, three, or any number of small chunks in use 
including all of them. When a new small chunk is needed, the lists are checked to find the 
large chunk with the fewest small chunks free. Using this large chunk helps minimize 
memory fragmentation. 
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To free memory the address is used to locate the corresponding TTHHeeaappNNooddee instance (and 
the small chunk within it if necessary). If it is a large chunk being freed then the chunk is 
simply placed at the head of the free large chunk list. If it is a small chunk then the 
bitmap is updated to free the small chunk and the TTHHeeaappNNooddee instance is moved to the 
list that corresponds to the new number of small chunks in use. This requires splicing the 
list around the TTHHeeaappNNooddee instance where it is removed (which requires doubly-linked 
lists). 
 
Allocating a large chunk, freeing a large chunk, and freeing a small chunk are all 
constant-time operations. Allocating a small chunk is linear in the ratio of the large and 
small chunk sizes (the head of each list must be checked to find the large chunk with the 
fewest free small chunks). Since this ratio is fixed, this is also constant time and does not 
scale with the total number of memory chunks. 
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Testing 

Real data, realistic data, and arbitrary data 
When testing to find errors and verify proper operation, there are three possible inputs 
that can be used: 
 

• Actual data from the front end 
 

• Simulated data that replicates the front end 
 

• Arbitrary random data that fits the input format 
 
At first glance, it would seem that actual data would always be ideal for testing. After all, 
this is the same kind of data that will be used in the final system. The same argument 
could be made for accurate simulated data, with the added advantage of being able to 
generate as much test data as desired. However, consider the case of a bug that only 
manifests in an obscure case that is unlikely to occur. Using actual or simulated data is 
far less likely to uncover this bug, but the consequences of not finding the bug are still 
very serious. 
 
If a bug occurs for only a single input and no others, it wouldn't matter how you chose 
test input; either it would be found or it would not be found, depending on whether you 
lucked into using the one input that causes it. Fortunately real bugs tend to occur for a 
variety of similar cases or when a certain condition occurs, and they are not restricted to 
the range of typical inputs. In fact, uncaught bugs are more likely to be found in boundary 
cases where an unusual condition occurs that was not anticipated when designing for the 
general case. In this case, distributing test cases widely throughout the entire range of 
possible inputs is more likely to catch all bugs than focusing them in the typical input. 
 
Moreover, there are many places where realistic inputs will be used during testing and 
commissioning, so these already get extra focus. Therefore, it is best to use random and 
arbitrary input to test for accuracy and locate bugs. 
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Testing vs. design for performance 
When it comes to high performance software, testing alone cannot guarantee that a non-
trivial program is able to meet hard real-time requirements. This is because the program 
contains many possible decision paths and the worst-case performance may be on a path 
that was not exercised. To avoid this, it is important to keep the core logic 
straightforward to avoid seeing large differences in execution time for different input 
conditions. This links back to the previous discussion of design rules that said we can't 
have loops that run an indeterminable number of times. 
 
Assembly language functions make performance determination simpler because their 
clock cycles can be counted directly. Thus the goal of performance testing is to determine 
the additional cost for the remaining C++ code so that the final performance can be 
examined. Once complicated logic is simplified, it is possible to run over a sample of 
realistic data and look at the average and maximum processing time per Event. With 
these numbers in hand and verified acceptable, the known assembly language function 
run times can be used to scale these times to higher rates 
 
Because we anticipate running various Tasks, the performance will ideally have 
headroom for running them. Since Tasks are non-critical and can be shutdown if needed 
to keep up, this headroom ensures a large safety factor is available for the primary data 
processing. 
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Faults and Warnings 
Testing does not stop once the final system is online. During normal operation a number 
of checks are done to catch possible errors. Failure of these tests represents a fatal design 
flaw and cannot be tolerated, so a Fault is issued. The result of this Fault is a diagnostic 
code sent to the HPU and a total shutdown of all operation. Faults therefore represent a 
condition from which recovery is neither possible nor desirable. This addresses the 
design requirement that bad data should never be output. 
 
When a less serious error occurs that can be recovered from, a Warning is issued and the 
HPU is so informed. For example, there is a Warning issued when the main loop 
processing time exceeds the design value, while a Fault is issued if the time exceeds the 
maximum time that can be tolerated without potential input buffer overflow. Warnings 
allow errors to be detected without spoiling a run that is likely successful. If necessary, 
the run data can be rejected after the fact when the cause of the Warning is tracked down. 
 
Beyond Faults and Warnings are a number of assertion tests that are executed only during 
initial testing. These tests confirm things that are unlikely to go wrong in a fully 
debugged system but which can be valuable to check early on in development. These 
tests can often be time-consuming so they cannot be left in the final system. All testing 
except performance testing is done with asserts enabled. 
 
The decision to add a Fault or assert check is made by the developer based on his or her 
best judgment. Ideally there will be asserts sprinkled liberally throughout the code, with 
Faults used in places where an error is deemed potentially likely or particularly serious. 
Asserts are often sufficient in places where an error could occur during development but 
which need not be tested every time, such as making sure that the pointer returned by the 
output buffer is non-zero before dereferencing. Faults are more often needed in situations 
where the data being tested comes from an outside source. 
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Accuracy testing 

General 
To test the system in a situation close to the final mode of operation, we need to take all 
testing operations (simulation of input, checking of output) off the DPU under test. This 
is easy to do if we make use of the programmable nature of the Data Exchange. This 
allows us to route generated input data through two different DPUs: one that runs the 
software under test and another running software that generates equivalent output. A final 
DPU runs software to compare the two and determine whether it passes. 
 

Input Simulator

Equivalent Decoder

Decoder to Test

Output Checker

 
Figure 30: Test setup 

 
Thanks to the flexibility of the DPU software framework, all four DPUs can run the same 
software with different Decoders used. The input simulator runs DDPPUU__SSiimmuullaatteeDDeeccooddeerr 
and the output checker runs DDPPUU__CCoommppaarreeDDeeccooddeerr. 
 
Generating random input is easily done, but the question remains of how to check the 
output. The Decoder algorithm itself is best tested using Monte Carlo simulation to 
determine the efficiency, which requires a C++ version with no assembly language that 
can be run on other platforms. What we wish to test here is that the algorithm is properly 
implemented and produces precisely the output we expect. To meet both goals, the 
equivalent Decoder is a bit-accurate simulation of the Decoder under test. To minimize 
the chance of making duplicate errors, the algorithm is reimplemented from scratch in as 
clear and simple a way as possible. Performance is not a concern here, so completely 
different methods can be used to implement the equivalent Decoder. Only the most trivial 
of code can be shared between these two implementations. 
 
Because the two Decoders are bit-identical, the output checker has a very simple job. It 
compares the two inputs and displays both when an error is found. The data contains the 
random number seed used so the Event that caused a problem can be repeated easily. 
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SPU 
The SPU Decoder was tested with a few hundred simulated Events to eliminate bugs. 
Further verification with many millions of Events is now needed to confirm that no other 
bugs remain. 
 

RPU 
The RPU Decoder was tested with a few hundred simulated Events to eliminate bugs but 
was not subjected to deeper testing. The RPU algorithm is currently being examined in 
more detail to see if neutron rejection should be used, and will be tested further once that 
decision is made. 
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Performance testing 
Because we have limited branches and decision points to a minimum, the performance of 
the main loop is very close to being a constant plus the performance of the individual 
assembly language functions. To put it another way, the processing time varies 
significantly only with the number of channels/clusters, and this variation is limited to the 
assembly language routines. Because of this, we only need one data point to determine 
this constant. To be safe, we run a number of mock events with the same number of 
channels/clusters and take the worst time. 
 
The pattern we will use to test is chosen to be higher in occupancy than the real system. 
We hope to find this close to our 3000 clock cycle limit and thus have maximum 
accuracy in our fit near the critical point. We place four clusters of one channel each and 
one cluster of two channels for each SPU, and we place the output of these SPUs into the 
RPU. This simulates the worst case where everything passes neutron rejection. One 
neighbor is marked on each SPU; the actual transverse will likely not even need this. All 
numbers are in DSP clock cycles. 
 

• Precision SPU:   895 in the framework + 2090 in the Decoder = 2985 clocks 
 

• Transverse SPU:   895 in the framework + 2140 in the Decoder = 3035 clocks 
 

• RPU: 1025 in the framework + 2181 in the Decoder = 3206 clocks 
 
The RPU takes longer in the framework because it uses variable-length input. 
 
Now that we have this information, let's look back at the performance numbers for the 
assembly language routines when we mark one set of neighbors. Let H be the number of 
initial hits without neighbors and let C be the number of clusters. After neighbors are 
marked, we will have a total of H + 2C channels being kept. 
 
SPU: 

• OOOOTTEElliimmiinnaattee:   241 clocks 
• MMaarrkkNNeeiigghhbboorrss:     20 clocks 
• PPaarrsseeBBiittmmaapp:   7 * ( H + 2C ) + 28 clocks 
• FFiinnddPPeeaakk: 10 * ( H + 2C ) + 28 clocks 
• CCaallccuullaatteeTTiimmee: 14 * C + 34 clocks 
• CCuuttTTiimmee:   3 * C +   7 clocks 
• AAddddBBiittmmaapp: 14 * C + 36 clocks 
• LLiinnkkLLiisstt:   6 * C +   8 clocks 
• OOuuttppuuttRReessuullttss: 3 * ( H + 4C ) + 15 clocks 

 
RPU: 

• NNeeuuttrroonnRReejjeecctt: 2 * H + 15 * C + 39 clocks 
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The total for the SPU assembly language functions is 20H + 83C + 418 clocks. The RPU 
assembly language function must be run five times: four times for precision SPUs and 
one time for the transverse SPU. Letting the P subscript denote the precision counts and 
the T subscript denote the transverse, the total for the RPU is 8HP + 2HT + 60CP + 15CT + 
195 clocks. We can compare these assembly language numbers to the performance test 
numbers to determine the actual constants for the total time to process one Event: 
 

• Precision SPU: 20H + 83C + 2450 clocks 
 

• Transverse SPU: 20H + 83C + 2500 clocks 
 

• RPU: 8HP + 2HT + 60CP + 15CT + 2771 clocks 
 
Looking back at the numerology, the precision SPU has an average of 1.1 clusters and 5.4 
channels per Event, while the transverse SPU has an average of 4.3 clusters and 8.7 
channels. Plugging these in give us the estimated performance: 
 

• Precision SPU: 2650 clocks 
 

• Transverse SPU: 3031 clocks 
 

• RPU: 2962 clocks 
 
When we compare these numbers to the 3000 clocks we have available at a 100kHz 
trigger rate, we are concerned. There is no problem currently as the initial design 
requirement is only a 75kHz trigger rate, but the question remains what will be done 
during the upgrade to 100kHz. As it turns out, the current Decoders contain a number of 
runtime checks that ensure proper operation. Most of these checks are unnecessary 
because they are only verifying that the system has not produced invalid values at some 
point along the way. After years of error-free operation at the lower 75kHz trigger rate it 
would be safe to remove these checks during the upgrade, which would save more than 
enough time to reach the 3000 clock cycle count needed for 100kHz operation. 
Alternatively, faster DSPs may be available at the time of the upgrade. 
 
We can also look at the worst-case performance. Maximizing the cluster count will 
maximize the time, so the worst case will be hitting every fourth channel (three channels 
per cluster after neighbor marking plus a one channel gap between clusters). This means 
48 clusters and 48 channels hit before neighbor marking: 
 

• Precision SPU: 7394 clocks 
 

• Transverse SPU: 7444 clocks 
 

• RPU: 6851 clocks 
 
We are well under the 10000 clock cycle limit we have set. 
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Conclusion 

Summary 
The DPU software framework is a flexible, high-performance platform for data 
acquisition. With appropriate Decoders the framework can be adapted to many different 
uses, and could serve as a starting point for a software framework for a generic ROD. In 
the case of the CSC Decoders, performance is acceptable for a 75kHz trigger rate and can 
be tweaked to allow for a 100kHz trigger rate if needed. 
 
The reason things are tight for a 100kHz trigger rate is the effort put into making the 
worst-case performance acceptable. This is a serious issue in a system with such a low 
occupancy (and thus a huge difference between the typical and worst cases). Many tricks 
were used to make things constant-time rather than variable, which explains the large 
constant terms in all the performance formulae. One advantage to this is it reduces the 
need for large amounts of headroom, as the time is not strongly varying with the number 
of hits/clusters. 
 
A DSP-based software framework allows for calculations and flexibility not practical on 
an FPGA design. The initial FPGA-based sparsifier was expected to perform only the job 
of the OOOOTTEElliimmiinnaattee assembly function (along with simple buffer management and 
output formatting). Thanks to the DSP and software framework, the SPU Decoder is able 
to do far more and even assists the RPU by pre-calculating the cluster bitmaps. To a great 
extent, the functionality of the Decoders has expanded to fill the processing time 
available. This means maximizing work performed for the same price, and can relieve 
some of the burden on later processing stages. This is something that must be considered 
when weighing such a flexible solution against a more limited approach using 
programmable hardware devices. 
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Future work 
The immediate priority is to complete the verification testing for the SPU, which has 
been delayed due to a problem with a computer needed to operate the ROD. This is the 
last stage in confirming that the equivalent SPU Decoder is an exact match for the actual 
SPU Decoder. 
 
The next step is to perform Monte Carlo simulation using the equivalent Decoders to see 
how the algorithms perform. This testing was done earlier using simplified versions of 
the algorithms but needs to be reexamined now that the full bit-identical Decoders are 
available. This is the final step in verifying that the Decoders are acceptable for 
processing data in ATLAS. 
 
The DPU software framework is general enough to use in other situations. The modular 
design for the plug-ins is ideal for use in a generic ROD. There are a number of items that 
could be improved for this purpose. First, the Status structure acts like a giant global 
variable. Refactoring the design to eliminate this would decouple the individual systems 
and allow for better unit testing. This is also important if future uses require multiple 
input or output buffers with different conditions for deciding when to begin processing. 
 
Once the decoupling is done, additional input and output Event formats can be used. The 
current generic Event has been surprisingly flexible with a number of test formats and is 
fairly efficient to process, but more flexibility could be added to a new set of queue 
classes which could be substituted at compile time. This would not affect the current 
performance but would extend the range of possible uses for the framework. 
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PART II 
 

K Physics in the FDQM 
 



 72 

Motivation 

Introduction 
The Correspondence Principle tells us that a new theory should be as good as the theory it 
replaces where the old theory was accurate, and better than the old theory in an area the 
old theory was incorrect. Put more simply, the best theory is the one that fits experiment 
best. This seems reasonable, but one could devise a purely empirical "theory" that will 
always fit experiment perfectly through the use of an arbitrary number of tuned 
parameters. This is of no predictive value, so some measure of the quality of fit relative to 
the number of tuned parameters is necessary to evaluate theories. One way to do this is to 
do a minimization of chi-squared for all possible values of the theory's parameters. This 
takes everything into account, but is only useful to evaluate what the best values are. In 
the end, the actual value of chi-squared must be examined to determine a confidence 
level. 
 
Such confidence levels cannot ever prove a theory, but they can exclude a theory once 
there is no possible set of parameter values that could fit experiment with any significant 
confidence. To make it easier to get an intuitive feel, multidimensional contour plots of 
confidence levels can show what ranges and combinations of parameters are allowed. 
These plots can guide physicists in selecting lines of experimental research to explore 
further. 
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CP violation theory in the K system 
The K mesons form an octet with the other light spinless mesons of negative parity. The 
decay of kaons is of great interest in the study of CP violation because for a time it was 
the only system where CP violation had been experimentally confirmed. 
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Figure 31: SU(3) octet showing the K meson family in Iz - Y space [10] 

 
There are two potential sources for CP violation in the neutral kaon system, and both 
have been verified to occur experimentally. The first, indirect CP violation, occurs 
because the mass eigenstates differ from the CP eigenstates. 
 

The 0K  and 
0K  are flavor eigenstates, but they are not mass eigenstates because they 

mix. They are also not CP eigenstates because the charge conjugation operator switches 
particle and antiparticle. 
 

• CP operating on the flavor eigenstates is defined up to a phase: [35] 
00 KKCP η=   0*0 KKCP η=   12 =η  
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Figure 32: One of two box diagrams for neutral kaon mixing 
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• We can write down the CP eigenstates trivially if we choose η to be real: 
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• But if CP is not a conserved quantity, the mass eigenstates will be different: [21] 
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LK  and SK  are the long and short lived neutral kaons, respectively. These are the 
particles with definite mass and lifetime, and are thus the mass eigenstates. Schrödinger's 
equation is, in general, a matrix equation that happens to be diagonal in the mass basis. 
This fact can be used to relate the unknown matrix elements in the flavor basis to the 
measured masses and lifetimes of LK  and SK . 
 

• Schrödinger's equation has dispersive and absorptive parts: [21] 
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Experimentally, we know that CP violation is very small; this is reflected in the matrix 
elements. 
 

• We can place limits on some of the matrix elements: [21] 

1212 ReIm MM <<  

1212 ReIm Γ<<Γ  

1212 ImIm M<<Γ  
 
These approximations allow us to obtain a number of useful relationships when we 
diagonalize the matrix for the flavor basis and compare it to the mass basis. 
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Figure 33: Relationships and approximations for the flavor basis matrix elements [21] 

 
• Define a parameter ε  that is a measure of indirect CP violation: [21] 
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Using experimental values for mΔ  and ΔΓ , we find that the phase of ε  is very close to 

4
π

 [14]. The parameter ε  represents the deviation of the CP eigenstates from the mass 

eigenstates. If CP were conserved, the eigenstates would be the same because the 
Hamiltonian would be simultaneously diagonalized in both bases. Thus ε  is a measure 
of indirect CP violation. 
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It is also possible to have direct CP violation if the decay amplitudes are CP violating. Of 
particular interest are the two pion and three pion final states. If there were no CP 

violation, the two pion states −+ππ  and 00ππ  would both have the same CP as SK . 

Similarly, the three pion states 0πππ −+  and 000 πππ  would have the same CP as 
LK . This is why LK  has the longer lifetime: kinematically there is far more phase 

space available in the two pion states than in the three pion. Because of CP violation, 
however, a small number of LK  are able to decay to two pions. By comparing the 
amplitude for these to the CP-allowed decays, we get dimensionless measures of direct 
CP violation. 
 

• Dimensionless measures of CP violation for pion final states: [10] 
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The quantity 
ε
ε 'Re  is what is generally measured by experiment. 
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FCNC in the Standard Model and beyond 
In the Standard Model, the quark weak eigenstates are not the same as the mass 
eigenstates. We can choose to take the up-type quarks as being the same in both the weak 
and mass bases, while the down-type quarks are related by the Cabibbo-Kobayashi-
Maskawa (CKM) mixing matrix. 
 

• The CKM matrix converts the mass eigenstates to the weak eigenstates: 
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• The signed weak interaction depends on weak eigenstate currents: 

( )2W
g W J W Jμ μ

μ μ
− + + −= +L  

jLiLijiLiL duVduJ μμμ γγ ==− ''  

 
• The down-type neutral weak interaction is unaffected by the CKM matrix: 

3
1' '

sin cos sin cos 2 iLZ iL iL iL
W W W W

e ed I d d dμ μγ γ
θ θ θ θ

⎛ ⎞= = −⎜ ⎟
⎝ ⎠

L  

 
Both the up-type and down-type neutral weak interactions remain diagonal in both the 
weak and mass bases, while the signed weak interaction picks up a CKM matrix element 
in the mass basis. As a result, the Standard Model does not allow tree-level Flavor 
Changing Neutral Currents (FCNC). It is possible, however, to have an effective FCNC 
at higher order through penguin and box diagrams. 
 
 

 d   d  

0Z

 d   s  

0Z

 
Figure 34: Quark flavor cannot change in a Standard Model neutral interaction 
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Figure 35: The Standard Model does allow FCNC through penguin (left) and box (right) diagrams 

 
Inspired by some beyond the Standard Model (BSM) theories such as E6 [27], we can add 
a single down-type quark that is a singlet under the weak interaction. Such an isosinglet 
down quark would mix with other down-type quarks in a 4x4 extension to the CKM 
matrix [9]. This is called the Four Down Quark Model (FDQM). 
 

• Approximate version of the 4x4 extension to the CKM matrix: [17] 
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Unlike the regular down-type quarks, the isosinglet down quark has 03 =I . This 
changes the down-type neutral weak interaction. 
 

• The down-type neutral weak interaction in the FDQM: 
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We now have a non-diagonal term that produces tree-level FCNC. The quantity jiVV 4
*
4  

determines the strength of these FCNC. 
 

• Define coefficients of FCNC in the FDQM: [37] 

jiij VVU 4
*
4−=  
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It is most convenient to define effective vertices when working with FCNC in the 
Standard Model. These can be compared to the FDQM to find an interesting relationship. 
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Figure 36: Effective vertices for FCNC, idisi VV *=λ  [12] 

 
• FCNC term for s  and d  quarks in the FDQM Lagrangian: [17] 
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• Weak penguin effective vertex from above (top quark): 

( ) ( )

( ) LLtt

t
W

W
Z

F
ttop

dsxC

dsxCMeGiZds

μ

μ

γλ

γγ
θ
θ

π
λ

0

50
2

2 1
sin
cos

22
∝

−=
 

 
Because these two terms differ only in the constants out front, it is possible to modify any 
result that includes ( )tt xC0λ  so that it also includes the FDQM contribution to FCNC. 
 

• Modification to include FDQM in FCNC results: 

( ) ( ) sd
WF

tttt U
MG

xCxC 2

2
00

2
πλλ +→  

 
This makes things much easier as many results have already been calculated by Buras 
and given in term of the basic functions ( ( )txB0 , ( )txC0 , etc) that were calculated by 
Inami and Lim. [28] 
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One challenge in obtaining the above formula is the varying sign conventions and 
constant definitions used in phenomenology literature. In particular, the above result for 

sdFCNCL  has a minus sign that is due to a different sign convention, while the vertex is 

really iL . This is critical to understand in order to obtain the correct replacement. Even 
considering this issue, papers by Buras and other authors quote a different formula. 
 

• Commonly seen version of the standard FDQM replacement formula: 
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xCxC πλπλλ +=+→  

 
This differs by a sign change in dsUIm . Because dsU  is essentially an independent and 
unknown quantity this difference has little effect except when comparing results between 
authors, so we will use the more common version that has dsU . 
 
 
 

Minus convention: μμμμ τ BYigWigD
2
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Uses 
2
Y

 as shown above: 
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Uses Y  in place of 
2
Y

: YIQ += 3  

 
0>e : charge of particle Qe=  

0<e : charge of particle QeeQ −==  
 

Figure 37: Common places where sign conventions and constant definitions can differ 
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The CKM program 
The basis for this work is a FORTRAN program originally developed by Dr. Dennis 
Silverman for doing chi-squared analysis of the CKM matrix in the FDQM. Fourteen 
experiments are included in the computation of chi-squared for over 100 billion 
combinations of angles and phases in the extended CKM matrix [25]. To combine the 
chi-squared for Gaussian distributions with a Poisson distribution for a few events, we 
must use a different formula and add eventsN2  degrees of freedom. [38] 
 

• Chi-squared formula: 

( )
22

2
2

theoryexp

theoryexp xx

σσ
χ

+

−
=  

• Chi-squared formula for ( )ννπ ++ →KBr : 

exp

theory
Br

Br
22 =χ  

 
The output of the program is a series of chi-squared contour plots showing what regions 
of various variables are allowed and not allowed. [25] 
 
Four new K physics experiments were added to this program. Each one produces an 
equation for the result and its sigma as a function of the angles and phases of the 
extended CKM matrix. These equations are computed for each set of angles/phases and 
added into the total chi-squared to contribute to the contour plots. Any dependencies not 
included in the angles/phases are plugged in manually and their uncertainties become part 
of the sigma function. 
 
 

C Experiment #8: epsilon 
C Some premultiplies 
        ilamtrlamt = ilamt*rlamt 
        ilamcrlamt = ilamc*rlamt 
        rlamcilamt = rlamc*ilamt 
        ilamcrlamc = ilamc*rlamc 
        Q(8)  = -43592.4*(ilamtrlamt) 
     $         -  32.832*(ilamcrlamt+rlamcilamt) 
     $         - 10.8379*(ilamcrlamc) 
        S2_Q8 = 4.91393e7*((ilamtrlamt)**2) 
     $         +  67462.2*ilamtrlamt*(rlamcilamt+ilamcrlamt) 
     $         +  22266.1*ilamcrlamc*ilamtrlamt 
     $         +  81.9506*(((rlamcilamt)**2)+((ilamcrlamt)**2)) 
     $         +  53.0295*ilamcrlamc*(rlamcilamt+ilamcrlamt) 
     $         +  11.9803*((ilamcrlamc)**2) 
        sum = sum + ((Q(8)-P(8))**2)/(abs(S2_Q8)+S(8)**2) 
        if(sum.gt.default_value) goto 101 
        count(8)=count(8)+1 

Figure 38: Snippet of the FORTRAN code for the added K physics experiments 
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Theory 

Calculation of ε  
We start from [14], equation 3.22, which gives ε  in terms of 12M . We drop the 4

π  

phase and ignore the second term in ε  as negligible. Combining with equation 3.37 gives 
an equation for ε  in terms of basic functions. These basic functions can be found in [12], 
equations 3.17 through 3.19. 
 

• [14], equation 3.22: 
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• [14], equation 3.37: 
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• [12], equations 3.17 through 3.19: 
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• Our theoretical value for ε , SM (without the 4
π  phase): 

12Im
2

1 M
M K

SM Δ
=ε  

 
This is the contribution due to box and double penguin 2=ΔS  diagrams. Wherever you 
have a double penguin, you can also get a double FCNC diagram in the FDQM. This 
contribution is obtained from the second term of [17], equation 45, by replacing their 

2
Kf  with 22 KF . 
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• [17], equation 45: 
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• Our theoretical value for ε , BSM (without the 4
π  phase) 
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We use the following values with the errors added in quadrature. 

• GeV15.025.1 ±=cm      [15] 
 

• GeV5165 ±=tm       [14] 
 

• 13.085.0 ±=KB       [39] 
 

• 20.038.11 ±=η       [14] 
 

• 01.057.02 ±=η       [14] 
 

• 04.047.03 ±=η       [14] 
 
We use the following values as exact. 

• 2-5GeV10166.1 −×=FG     [15] 
 

• GeV1598.0=KF       [15] 
 

• GeV497672.00 =Km      [15] 
 

• GeV41.80=Wm       [15] 
 

• GeV10489.3 15−×=Δ KM     [15] 
 
The resulting formula for ε  is a function of cλ , tλ , dsU , and their corresponding 
uncertainties. This result is compared to an experimental value from [14], equation 3.39, 

of ( ) 310013.0280.2 −×±  (dropping the common 4
π  phase). 
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Calculation of 
ε
ε 'Re  

We use [14], equation 5.5, to get ε
ε '  in terms of 'εF , and equations 5.16 through 5.18 to 

express 'εF  in terms of basic functions. [14], table 5 gives the coefficients needed; we 

interpolate to determine the dependence of these on )4(
MS

Λ . When the NDR and HV 

schemes give different results we take the average and use the difference as a σ2  error. 
The basic functions used are from [12], equations 3.11 through 3.25, as needed. 
 

• [14], equation 5.5: 

'Im'
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ε
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• [14], equations 5.16 through 5.18: 
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Here )( j
ir  are the coefficients that depend on )4(

MS
Λ  and the renormalization scheme 

used. )2/1(
6B  and )2/3(

8B  are "bag parameters" determined from lattice QCD 
simulations. 
 

The form of equation 5.16 above includes an implicit approximation that ε
ε '  is real. We 

will therefore write this explicitly. 
 

• Our theoretical value for ε
ε 'Re , SM: 

'Im'Re ελ
ε
ε Ft

SM
=  
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Table 6: 
)( j

ir  coefficient dependence on 
)4(

MS
Λ  [14] 

 
To add the BSM contribution we use the standard replacement on the 0C  inside the 
gauge-independent basic functions 0X , 0Y , and 0Z . 
 

• Buras [12], equations 3.23 through 3.28: 
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• Our theoretical value for ε
ε 'Re , BSM: 
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We use the following values with the errors added in quadrature. 
• MeV27 ±=dm       [14] 

 
• MeV25130 ±=sm      [14] 

 
• GeV5165 ±=tm       [14] 

 

• 3.00.1)2/1(
6 ±=B       [14] 

 

• 2.08.0)2/3(
8 ±=B       [14] 

 

• GeV50340)4( ±=Λ
MS

     [14] 

 

• )(
0

ir      (from table 3, also depends on )4(
MS

Λ ) 

 
We use the following values as exact. 

• )(i
Xr , )(i

Yr , )(i
Zr , )(i

Er   (from table 3, still depend on )4(
MS

Λ ) 

 

• 2-5GeV10166.1 −×=FG     [15] 
 

• GeV41.80=Wm       [15] 
 

The resulting formula for ε
ε 'Re  is a function of tλIm , dsUIm , and their 

corresponding uncertainties. This result is compared to an experimental value from [29], 
figure 11, of 00018.000172.0 ± . 
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Calculation of ( )ννπ ++ →KBr  
We use [14], equation 6.7, for the branching ratio and add the isospin breaking correction 
in equations 6.8 and 6.9. The NLX  are interpolated from [13], table 1, for their cm  and 

)4(
MS

Λ  dependencies. The basic functions used are from [12], equations 3.23 and 3.26, as 

needed. The NLO corrections to the basic functions are from [14], equation 6.2. 
 

• [14], equation 6.7 with isospin correction Kr : 
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• [12], equations 3.23 and 3.26: 
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• [14], equation 6.2: 

( ) ( ) ( )ttXt xXxXxX 00 994.0==η  
 

Our theoretical value for ννπ ++ →K  branching ratio, SM: 
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Table 7: NLX  dependence on cm  and 
)4(

MS
Λ  [13] 
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To add the BSM contribution we use the standard replacement on the 0C  inside the 
gauge-independent basic function 0X . 
 

• Our theoretical value for ννπ ++ →K  branching ratio, BSM: 
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We use the following values with the errors added in quadrature. 

• GeV15.025.1 ±=cm      [15] 
 

• GeV5165 ±=tm       [14] 
 

• GeV50340)4( ±=Λ
MS

     [14] 

 

• ( ) 0006.00482.0exp
0 ±=→ ++ νπ eKBr   [15] 

 
We use the following values as exact. 

• 129
1=Kα        [14] 

 
• 23124.0sin =Wθ      [15] 

 

• 2-5GeV10166.1 −×=FG     [15] 
 

• GeV41.80=Wm       [15] 
 
The resulting formula for the branching ratio is a function of cλ , tλ , usV , dsU , and 
their corresponding uncertainties. This result is compared to an experimental value from 

[32], below figure 6, of 10105.1 −×  with a Poisson error. 
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Calculation of ( )SDLKBr −+→ μμ  

We use [11], equations 7.71 through 7.74, for the branching ratio. The NLY  are 

interpolated from [13], table 3, for their cm  and )4(
MS

Λ  dependencies. The basic 

functions used are from [12], equations 3.11 through 3.25, as needed. The NLO 
corrections to the basic functions are from [13], equation 19. 
 

• [11], equations 7.71 through 7.74: 
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• [12], equations 3.24 and 3.27: 
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• [13], equation 19: 

( ) ( ) ( )ttYt xYxYxY 00 012.1==η  
 

• Our theoretical value for −+→ μμLK  branching ratio, SM: 
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To add the BSM contribution we use the standard replacement on the 0C  inside the 
gauge-independent basic function 0Y . 
 

• Our theoretical value for −+→ μμLK  branching ratio, BSM: 
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Table 8: NLY  dependence on cm  and 
)4(

MS
Λ  [13] 

 
We use the following values with the errors added in quadrature. 

• GeV15.025.1 ±=cm      [15] 
 

• GeV5165 ±=tm       [14] 
 

• GeV50340)4( ±=Λ
MS

     [14] 

 

• ( ) 0018.06351.0exp ±=→ ++ νμKBr    [15] 

 
We use the following values as exact. 

• s1017.5 8−×=
LKτ      [15] 

 

• s102386.1 8−×=+Kτ      [15] 
 

• 129
1=Kα        [14] 

 
• 23124.0sin =Wθ      [15] 

 

• 2-5GeV10166.1 −×=FG     [15] 
 

• GeV41.80=Wm       [15] 
 
The resulting formula for the branching ratio is a function of cλ , tλ , usV , dsU , and 
their corresponding uncertainties. This result is compared to an experimental value of 

( ) 51001.40 −×± . [39] 
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Error analysis 
Finding a nominal value isn't very difficult, although there are some complexities. 
However, that value is meaningless without a corresponding uncertainty. In general, 
errors can be computed in the traditional way for a function ( )ixf  of variables ix  with 
independent errors 

ixσ . 

 
• Uncertainty in a general function f  of multiple independent variables: 
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xf ii x
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2
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To make it easier to perform the computation and avoid mistakes, the algebra for 
computing this σ  can be automated using Mathematica. To do this, a temporary function 
of a single variable is created for each ix . The square of the derivative of this function 
times the corresponding sigma is added into a running total and returned as the result. 
 

sigma[ func_, arg_, sig_ ] := 
  Block[ { s, i, l, f, a }, 
    s = 0; 
    For[ i = 1, i <= Length[ arg ], i++, 
      l = arg; 
      f[ x_ ] := 
        Block[ {}, 
          l[[ i ]] = a; 
          Apply[ func, l ] /. a->x ]; 
      s += ( f'[ arg[[ i ]] ] sig[[ i ]] )^2 ]; 
    Sqrt[ s ] ] 

Figure 39: Mathematica code for the computation of errors 

 
Some values must be computed by means other than a formula, in which case it is not 
immediately possible to compute a σ  function as above. For example, the Penguin Box 
Expansion (PBE) coefficients are given in table 6. A linear interpolation is sufficient to 

describe the dependence on )4(
MS

Λ . The renormalization scheme dependence would 

largely be cancelled by similar dependence in )2/1(
6B  and )2/3(

8B ; however, those 
values are not well enough understood to separate that dependence from the overall errors 

[14]. Instead, an average value is used for )(
0

jr  with the difference between the two 

schemes treated as )(
0

2 jrσ . 
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Results 

Confidence plots 
The final output from the FORTRAN program is a series of confidence plots for various 
variables. Of particular interest for the K physics experiments are the ηρ −  plots. Of 
the four experiments added here, only the ε  experiment helps constrain the ηρ −  plot 
in the Standard Model so the remaining experiments are best left out. 
 

 
Figure 40: Plot of ρ  vs. η  in the Standard Model, including K physics experiments [25] 
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Figure 41: Part of same plot showing which experiments correspond to which lines 
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The situation is different in the FDQM because many of the standard experiments no 
longer provide the same constraints. For the ηρ −  plot, the annulus defined by the 

cdcb

udub
VV
VV

*

*
 constraint is restricted to the upper half ( 0>η ) by ννπ ++ →K  and ε . 

The phase angle in the ηρ −  plane ( 13δ ) is not otherwise constrained, although a more 
precise value of α2sin  could lock down the value of η . 
 

 
Figure 42: Plot of ρ  vs. η  in the FDQM [25] 

 



 94 

 (a) (b)

(c) 

 
Figure 43: Plot of ρ  vs. η  in the FDQM for (a) 12sin −=α , (b) 02sin =α , (c) 12sin =α  [25] 

 
Along with the wider range of 13δ  in the FDQM, the value of ε  can now have a BSM 
contribution. While the contribution due to the FDQM can be as low as 0%, it can also be 
as high as 60% at 1σ . 
 

 

Figure 44: Plot of 
expε

ε BSM  vs. 13δ  in the FDQM [25] 
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Finally, we can look at the range of values allowed for *
dssd UU = . The value 

0=sdU  is allowed, which means the Standard Model cannot be excluded by current 
experiments. The range of nonzero values for sdU  doesn't tell us anything about the 
likelihood of the FDQM being accurate though; as long as there is a nonzero difference 
between the Standard Model and experiment we will see a potential for a nonzero value 
of BSM quantities. Currently the error bars are close to 100% for many of the K physics 
experiments, so the contribution to CP violation due to BSM physics can be equal to the 
Standard Model contribution. 
 

 

Figure 45: Plot of sdUIm  vs. sdURe  (in units of 410− ) [25] 
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Future work 
Chi-squared analysis can never prove a theory, but it can be used to exclude theories and 
to suggest areas where better experimental results are need. For example, we can see that 
improved measurement of α2sin  could be useful to restrict η . Such restrictions will 
gradually edge out invalid theories and home in on the consistent ones. 
 
We have also seen that the addition of new experiments, even ones with large error bars, 

can be significant. In particular, the inclusion of ννπ ++ →K  is very important in the 
FDQM, although it provides too weak a constraint to be useful in the Standard Model. It 
is important to consider this and look carefully at early results from new detectors to see 
if they can be valuable even when the statistics are low. 
 
The future of this analysis is largely dependent on future experimental advances. As new 
results come in, the analysis can be extended and revised to look at the effects of each 
experiment and suggest areas where improvement would be useful. In this way, 
phenomenology acts as a feedback bridge connecting theoretical results back to 
experimental effort and provides a measure for judging how well the two match. 
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Appendix A: ATLAS Muon CSC ROD Software 

DPU documentation for the HPU 

Boot 
Before the DPU is released from reset, make sure that address 0x80000000 is set to 0 
using DPU Control. This signals the presence of the HPU to the DPU when it boots. 
After boot, poll the same address looking for a non-zero value. This value will be the 
address of the Status struct. All other memory addresses of interest will be located in the 
Status struct. Verify that this value is a legal pointer in the range of DPU memory 
available to the HPU. 
 
At this point, only a few items are available to the HPU, all of which should be verified: 

• All bools 
Verify that the corresponding DDuummmmyyIInntteeggeerr is set to 0xB00? (Status.h). 

••  SSttaattuuss..BBaassiicc..RReeaallHHPPUU  
Verify that it is set to ttrruuee. 

••  SSttaattuuss..BBaassiicc..RReeaallDDSSPP  
Verify that it is set to ttrruuee. 

••  SSttaattuuss..BBaassiicc..MMoodduullee  
Verify that the module ID is in the range 0 to 11 inclusive. 

••  SSttaattuuss..BBaassiicc..MMaajjoorrVVeerrssiioonn  
Verify that it is set to DDPPUU__VVEERRSSIIOONN__MMAAJJOORR (common.h). 

••  SSttaattuuss..BBaassiicc..MMiinnoorrVVeerrssiioonn  
Verify that it is set to DDPPUU__VVEERRSSIIOONN__MMIINNOORR (common.h). 

••  SSttaattuuss..BBaassiicc..BBoooottSSttaattuuss  
Verify that it is set to TTSSttaattuuss::::bbssBBaassiicc (Status.h). 

••  SSttaattuuss..BBaassiicc..IInniittiiaalliizzee  
Verify that it is set to ffaallssee. 

••  SSttaattuuss..BBaassiicc..CCaalliibbrraattiioonn  
Verify that it is a legal pointer in the range of DPU memory available to the HPU. 

••  SSttaattuuss..BBuuffffeerr..PPaarraammeetteerrAArrrraayy  
Verify that it is a legal pointer in the range of DPU memory available to the HPU. 

••  SSttaattuuss..BBuuffffeerr..PPaarraammeetteerrSSiizzee  
Verify that it is a legal pointer in the range of DPU memory available to the HPU. 

••  SSttaattuuss..BBuuffffeerr..RReessppoonnssee  
Verify that it is a legal pointer in the range of DPU memory available to the HPU. 

••  SSttaattuuss..BBuuffffeerr..CCIIBB  
Verify that it is a legal pointer in the range of DPU memory available to the HPU. 
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Initialization 
Generally only the items in SSttaattuuss..BBaassiicc and the buffers whose pointers lie in 
Status.Basic will be initialized. Those items are: 
 

••  SSttaattuuss..BBaassiicc..IInniittiiaalliizzee  
This item should be switched from ffaallssee to ttrruuee when all initialization is complete. 

 
••  SSttaattuuss..BBaassiicc..BBiiggIInnppuutt  

Setting this ttrruuee causes the DIB to use 1/2 of memory and the DOB to use 1/4. 
Setting this ffaallssee reverses the situation. In ATLAS, we will use true. 

••  SSttaattuuss..BBaassiicc..FFaassttIInnppuutt  
Setting this ttrruuee causes the DIB to use a higher-priority DMA channel than the 
DOB. Setting this ffaallssee reverses the situation. In ATLAS, we will use true. 

••  SSttaattuuss..BBaassiicc..IInnppuuttBBuuffffeerr  
This is an enum to specify the DIB input source. In ATLAS, we will use 
TTSSttaattuuss::::bbttXXFFPPGGAA for the SPU and TTSSttaattuuss::::bbttEEFFPPGGAA for the RPU. 

••  SSttaattuuss..BBaassiicc..OOuuttppuuttBBuuffffeerr  
This uses the same enum as above to specify the DOB output destination. In 
ATLAS, both the SPU and RPU will use TTSSttaattuuss::::bbttEEFFPPGGAA. 

••  SSttaattuuss..BBaassiicc..OOuuttppuuttIInntteerrrruupptt  
This option is not currently available and should be set to ffaallssee. 

••  SSttaattuuss..BBaassiicc..EEFFPPGGAA__FFrraammeeSSiizzee  
The EFPGA must be told what Frame size to use for DPU DMA input (DPU 
acting as destination). If SSttaattuuss..BBaassiicc..IInnppuuttBBuuffffeerr is set to TTSSttaattuuss::::bbttEEFFPPGGAA then 
the EFPGA is configured using the Policy subsystem's FFrraammeeSSiizzee. Otherwise the 
value in this variable is used. A reasonable default is 16. 

••  SSttaattuuss..BBaassiicc..DDXXMMooddee  
This is an enum to specify whether we use loopback mode in the EFPGA. In 
ATLAS, we will set this to TTSSttaattuuss::::ddxxNNoorrmmaall. 

 
••  SSttaattuuss..BBaassiicc..VVeerrbboossee  

Setting this ttrruuee enables pprriinnttff of diagnostic information by the DPU. This setting 
has no meaning if the DPU was compiled with PPRRIINNTT  ==OOFFFF (make.bat). In 
ATLAS, we will set this to ffaallssee. 

••  SSttaattuuss..BBaassiicc..CCoommmmaannddMMooddee  
This is an enum to select whether the CIB will be fed Default Decode Commands 
(used when the HPU is unable to send them). In ATLAS, we will set this to 
TTSSttaattuuss::::ccmmHHPPUU. 

••  SSttaattuuss..BBaassiicc..IInnppuuttDDaattaa  
This is an enum that selects the Policy set to be used for the DIB. In ATLAS, we 
will set this to TTSSttaattuuss::::iittTTiimmeesslliiccee for the SPU and TTSSttaattuuss::::iittSSppaarrssiiffiieeddDDaattaa for 
the RPU. 
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••  SSttaattuuss..BBaassiicc..DDeeffaauullttDDeeccooddeerr  
This is an enum that selects which Decoder is the default. In ATLAS, we will set 
this to DDaattaa::::DDPPUU__SSPPUUDDeeccooddeerr for the SPU and DDaattaa::::DDPPUU__RRPPUUDDeeccooddeerr for 
the RPU (decoders.h). 

••  SSttaattuuss..BBaassiicc..DDiissccaarrddDDeeccooddeerr  
This is an enum that selects which Discard Decoder is used. In ATLAS, we will 
set this to DDaattaa::::DDPPUU__SSPPUUDDiissccaarrddDDeeccooddeerr for the SPU and 
DDaattaa::::DDPPUU__RRPPUUDDiissccaarrddDDeeccooddeerr for the RPU (decoders.h). 

••  SSttaattuuss..BBaassiicc..OOuuttppuuttDDaattaa  
This is an enum that selects the Policy set to be used for the DOB. In ATLAS, we 
will set this to TTSSttaattuuss::::oottSSppaarrssiiffiieeddDDaattaa for the SPU and TTSSttaattuuss::::oottAATTLLAASSDDaattaa 
for the RPU. 

••  SSttaattuuss..BBaassiicc..PPrriimmeeIInnppuutt  
This allows us to pre-fill the input buffers with data. In ATLAS, we will set this to 
ffaallssee. 

••  SSttaattuuss..BBaassiicc..MMaaxxIInntteerrrruuppttCCoouunntt  
This option is not currently available and should be set to 0. 

••  SSttaattuuss..BBaassiicc..MMaaxxCClloocckkWWaarrnniinngg  
This is the number of clock cycles that a single pass through the main loop is 
allowed to take before a Warning is issued. In ATLAS, we will set this to 10000. 

••  SSttaattuuss..BBaassiicc..MMaaxxCClloocckkFFaauulltt  
This is the number of clock cycles that a single pass through the main loop is 
allowed to take before a Fault occurs. 

 
••  SSttaattuuss..BBaassiicc..MMaaxxTTaasskkSSiizzee  

This value determines the largest Task that may be created (in words). In ATLAS, 
we will set this to 0xFFFFFFFF. 

••  SSttaattuuss..BBaassiicc..OOppttiimmaallTTaasskkSSiizzee  
This value sets the size of small memory chunks in the Scheduling System's Task 
Heap (in words). This value will be rounded up to a power of two.. 

••  SSttaattuuss..BBaassiicc..TTiimmeeTTaasskkRReessoolluuttiioonn  
This value sets the resolution of time-based Task scheduling (in microseconds). 
The Scheduling System will activate a Task once the Task is within this amount 
of time of the scheduled time, so this should be set larger than the largest expected 
time for the main loop. 

••  SSttaattuuss..BBaassiicc..PPrroommppttTTiimmeeTTaasskkss  
Setting this ttrruuee will give time-based Tasks priority over Event-based ones. In 
ATLAS, we will set this to ttrruuee. 
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••  SSttaattuuss..BBaassiicc..OOvveerrrriiddee  
Setting this ttrruuee enables override for mode values. Decoders must support this 
feature or they will not be available. In ATLAS, we will set this to ffaallssee. 

• All other mode overrides 
These values are used to override the corresponding values in the Policy 
subsystem. Even if SSttaattuuss..BBaassiicc..OOvveerrrriiddee is set ttrruuee, the individual values are not 
overridden if they are set to 0 (or ttrrNNoonnee for OOuuttppuuttSSkkiippLLeennggtthh). In ATLAS, we 
will set all these values to 0 (ttrrNNoonnee for OOuuttppuuttSSkkiippLLeennggtthh). 

 
••  SSttaattuuss..BBaassiicc..EE__xx__YY__PPrriioorriittyy  

This value allows fine control of the priorities of the Management System. In 
ATLAS, we will set this to pprrEEmmppttyy. 

••  SSttaattuuss..BBaassiicc..GG__xx__EE__PPrriioorriittyy  
This value allows fine control of the priorities of the Management System. In 
ATLAS, we will set this to pprrEEmmppttyy. 

••  SSttaattuuss..BBaassiicc..GG__xx__GG__PPrriioorriittyy  
This value allows fine control of the priorities of the Management System. In 
ATLAS, we will set this to pprrEEmmppttyy. 

••  SSttaattuuss..BBaassiicc..GG__xx__YY__PPrriioorriittyy  
This value allows fine control of the priorities of the Management System. In 
ATLAS, we will set this to pprrEEmmppttyy. 

 
••  SSttaattuuss..BBaassiicc..OOrrddeerr  

Order from the HPU. In ATLAS, we will set this to TTSSttaattuuss::::oorrNNoonnee. 
 

••  SSttaattuuss..BBaassiicc..CCaalliibbrraattiioonn  
This variable holds a pointer to the array used for Calibration and other Decoder 
initialization (NOT the array itself). The exact details of what goes into this array 
depend on the Decoder. 

 
There are a couple items outside SSttaattuuss..BBaassiicc that may be optionally set: 
 

••  SSttaattuuss..BBuuffffeerr..PPaarraammeetteerrAArrrraayy  
This variable holds a pointer to the array of Parameter sets (NOT the array itself). 
The Parameter sets can be written directly before a run to save time. 

••  SSttaattuuss..BBuuffffeerr..PPaarraammeetteerrSSiizzee  
This variable holds a pointer to the array of Parameter set sizes (NOT the array 
itself). The Parameter set sizes can be written directly before a run to save time. 

 
••  SSttaattuuss..BBuuffffeerr..CCIIBB  

This variable holds a pointer to the CIB (NOT the buffer itself). Commands 
CANNOT be written before the run is started. 

 
After everything is set, SSttaattuuss..BBaassiicc..IInniittiiaalliizzee should be set to ttrruuee to begin a run. Note 
that this may be done long before the actual run begins (especially useful if Tasks need to 
be created and started). Wait until SSttaattuuss..BBaassiicc..BBoooottSSttaattuuss is equal to TTSSttaattuuss::::bbssNNoorrmmaall. 
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Creating and using Parameter sets 
Parameter sets are stored in the array pointed to by SSttaattuuss..BBuuffffeerr..PPaarraammeetteerrAArrrraayy, which 
contains TTSSttaattuuss::::MMaaxxPPaarraammeetteerrSSiizzee times TTSSttaattuuss::::MMaaxxPPaarraammeetteerrCCoouunntt words. Each 
Parameter set can hold up to TTSSttaattuuss::::MMaaxxPPaarraammeetteerrSSiizzee words, and there are 
TTSSttaattuuss::::MMaaxxPPaarraammeetteerrCCoouunntt sets available. The first TTSSttaattuuss::::MMaaxxPPaarraammeetteerrSSiizzee words 
are Parameter set 0, followed by the remaining Parameter sets in order. 
 
There are two ways to fill a Parameter set from the HPU. The first is to write directly to 
the appropriate words in the Parameter array. Once done, the corresponding word in 
SSttaattuuss..BBuuffffeerr..PPaarraammeetteerrSSiizzee must be set to the number of words in the new Parameter set. 
The second way is to send a Function Command with the Parameter set words attached. 
The specified Parameter set will be filled with those words before the Function is 
invoked. 
 
On the DPU side, plug-ins will use GGeettPPaarraammeetteerr(()) and GGeettPPaarraammeetteerrSSiizzee(()) 
(Parameter.h) to access the Parameter sets. 
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Sending Commands during a run 
The CIB is a circular buffer that receives Commands via DPU Control. One curiosity is 
that the CIB runs backwards in memory; this is necessary because DPU Control is only 
able to write forwards. The beginning of the buffer is at the highest address, and the end 
is at the lowest. A pointer to the lowest address is stored in SSttaattuuss..BBuuffffeerr..CCIIBB, and the 
size (in words) is available as TTSSttaattuuss::::CCIIBBSSiizzee. 
 
During IInniittiiaalliizzee(()) (triggered by setting SSttaattuuss..BBaassiicc..IInniittiiaalliizzee equal to ttrruuee), the DPU sets 
the entire CIB to zero and starts polling the first word (highest address) for a non-zero 
value. This word is the standard size word for a variable-length Packet. The size in the 
size word specifies the total number of words in this Command (including the size word 
itself); there is no padding because the FFrraammeeSSiizzee is 1. After (below) the Payload will be 
the size word of the next Command; this must be set to zero BEFORE the first size word 
is set non-zero to keep the DPU from reading past. 
 
For space efficiency, the size word contains more than just the size. The lower halfword 
contains the size, while the upper halfword is determined by the Command being issued. 
 
The actual Payload of the Command is stored in the normal (forward) direction in 
memory. This means that the lowest word just above the next size word is the first word 
of the Command, and the last word of the Command will be at the highest address just 
below the current size word. 
 

Remaining Command wordsFree Space Size wordCommand
word 0

Command
word 1

Next
size word
(set to 0)

Command
word 2

Lowest address Highest address
 

Figure 46: Layout of Commands in CIB memory (begin at the right) 

 
To send a command, the HPU should send the following in the forward direction: 

• Zero (next size word) 
• Command word 0 
• Command word 1 
• Command word 2 
• (any other Command words in order) 
• Size word (should overwrite the previous zero) 
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When we get to the end (lowest address) of the buffer, something must be done to restart. 
It is not permitted for a Command to wrap the buffer. If a Command exactly fills the 
buffer, then the next Command can start at the beginning (highest address) with no 
special action taken. If the new Command cannot fit, the value QQuueeuueeRReessttaarrtt (common.h) 
must be written in the size word following the last Command and the new Command 
goes at the beginning (highest address). Note that QQuueeuueeRReessttaarrtt must be written AFTER 
the new Command is written, and that this will require two DPU Control writes. 
Management of CIB memory to prevent overflow is the HPU's responsibility. 
 
There are 5 types of Commands that can be written: 
 

• Default Decode Command 
This is a simple command to process N events using the default Decoder. 

 
• Non-Default Decode Command 

This is a slightly more complex Decode Command that can use any Decoder. 
 

• Function Command 
This Command invokes a Function and has several arguments 

 
• Multi-Decode Command 

This allows a different Decode Command to be sent to every DPU 
 

• Multi-Function Command 
This allows a different Function Command to be sent to every DPU 

 
Multi Commands are the only way to send different Commands to different DPUs. DPUs 
can only look at one Command per pass through the main loop and have no mechanism 
to skip over Multi Commands that have only NOPs for them. A DPU could idle for many 
passes popping off Commands that are not meant for it, so this should be avoided. It is 
the HPUs responsibility to ensure DPUs are not delayed in receiving Decode Commands 
too long or drown in Function Commands; the exact policy for this depends on the 
Decoder used. 
 
Three words are common to many Commands: 
 

• Size word (Size word above) 
Upper halfword: CIndex 
Lower halfword: Size 

 
• Command word (Command word 0 above) 

Upper halfword: Type 
Lower halfword: Command 

 
• Param word (Command word 1 above) 

Entire word: Param 
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Default Decode Command: 
o Size word 

CIndex = number of Events to Default Decode 
Size = 1 

Free Space Size word
Next

size word
(set to 0)

Lowest address Highest address
 

Figure 47: Memory layout for Default Decode Command 

 
Non-Default Decode Command: 

o Size word 
CIndex = number of Events to Decode 
Size = 2 

1. Command Word 
Type = Decoder to use 
Command = CCoommmmaanndd::::DDPPUU__DDeeccooddeeEEvveenntt (Command.h) 

Free Space Size wordCommand
word

Next
size word
(set to 0)

Lowest address Highest address
 

Figure 48: Memory layout for Non-Default Decode Command 

 
Function Command: 

o Size word 
CIndex = incrementing Function Command Index 
Size = 3 + number of optional Parameter words 

1. Command word 
Type = Decoder to use 
Command = Function to invoke 

2. Param word 
Param = Parameter set number to use 

3. Beginning of optional Parameter words 
Any additional words tells the DPU to copy these words to the Parameter set 
specified in Param before invoking the Function 

Free Space Size wordCommand
word Param word

Next
size word
(set to 0)

Lowest address Highest address

Optional Parameter words

 
Figure 49: Memory layout for Function Command 
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Multi-Decode Command: 
o Size word 

CIndex = unused 
Size = 2 + MMaaxxiimmuummDDPPUUCCoouunntt (common.h) 

1. Command word 
Type = unused 
Command = CCoommmmaanndd::::DDPPUU__MMuullttiiDDeeccooddee (Command.h) 

2. Decode words (one for each Module ID) 
Upper halfword = Number of Events to Decode, or 0 for a NOP 
Lower halfword = Decoder to use (0 for Default), or 0 for a NOP 

Remaining Decode wordsFree Space Size wordCommand
word

Next
size word
(set to 0)

Lowest address Highest address

Decode
word 0

 
Figure 50: Memory layout for Multi-Decode Command 

 
Multi-Function Command: 

o Size word 
CIndex = incrementing Function Command Index 
Size = 2 + MMaaxxiimmuummDDPPUUCCoouunntt (common.h) + size of Commands 

3. Command word 
Type = unused 
Command = CCoommmmaanndd::::DDPPUU__MMuullttiiCCoommmmaanndd (Command.h) 

4. Offset words (one for each Module ID) 
Upper halfword = offset to the actual Command word relative to the Command 
word above, or 0 for a NOP 
Lower halfword = size of the actual Command below (does not include a size 
word), or 0 for a NOP 

5. Specific Commands 
Function Commands for individual DPUs (without size words) 

Specific Commands
(no size words)Free Space Size wordCommand

word Offset words
Next

size word
(set to 0)

Lowest address Highest address
 

Figure 51: Memory layout for Multi-Function Command 
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Sending Orders during a run 
Orders are asynchronous Commands that are executed as soon as the DPU sees them. 
Because of this, Orders violate all guarantees of stability and performance and should 
never be used except during testing or to end a run. 
 
To send an Order, first fill SSttaattuuss..BBaassiicc..PPaarraammeetteerr and SSttaattuuss..BBaassiicc..PPaarraammeetteerrSSiizzee as 
appropriate for the Order being sent. Orders can be found in main.cpp in their own 
section. Once the Parameter set is ready, set SSttaattuuss..BBaassiicc..OOrrddeerr to the desired value from 
TTSSttaattuuss::::EEOOrrddeerr. Poll SSttaattuuss..BBaassiicc..OOrrddeerrRReessppoonnssee and read once the Reply word is non-
zero. Be sure to zero this Reply word before sending another Order. 
 
To safely end a run using an Order, first wait until all Commands have received a 
Response in the Response Buffer. Then send the Order TTSSttaattuuss::::oorrHHaalltt. 

Using Tasks during a run 
There are  Functions that can interact with Tasks: 
 

••  DDPPUU__TTaasskkCCrreeaatteeFFuunnccttiioonn  
Set Type to the Task to be created. Param is unused 
Returns a Task ID of the created Task in the Response 

 
••  DDPPUU__TTaasskkIInniittiiaalliizzeeFFuunnccttiioonn  

Set Type to the Task ID to be initialized. Param depends on the Task 
Response depends on the Task 

 
••  DDPPUU__TTaasskkSSiiggnnaallFFuunnccttiioonn  

Set Type to the Task ID to be signaled. Param depends on the Task 
Response depends on the Task 

 
••  DDPPUU__TTaasskkOOuuttppuuttFFuunnccttiioonn  

Set Type to the Task ID to be output. Param depends on the Task 
Response depends on the Task 

 
••  DDPPUU__TTaasskkTTeerrmmiinnaatteeFFuunnccttiioonn  

Set Type to the Task ID to be terminated. Param depends on the Task 
Response depends on the Task 

 
••  DDPPUU__TTaasskkDDeessttrrooyyFFuunnccttiioonn  

Set Type to the Task to be destroyed. Param is unused 
Response contains no value 

 
A Task must be created but need not be destroyed until just before the end of the run. 
Before each use the Task should be initialized and then terminated when completed. 
Output is used to request output (current Temperature average or histogram, for 
example), while Signal can be used to send other messages to a Task. 
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Reading Responses during a run 
The TTRReessppoonnssee struct (common.h) is used to give a Response to a Decode or Function 
Command when complete. It has two items: 
 

• Reply word 
Upper halfword: CIndex 
Lower halfword: Reply 

 
• Data[ 2 ] array 

 
For a Decode Response, Reply will be rreeDDeeccooddee. CIndex will contain the least-
significant 16 bits of the Event Index, while DDaattaa[[  00  ]] contains the size of the Event 
being output (in words). 
 
For a Function Response, Reply will be either rreeSSuucccceessss or one of the rreeFFaaiilluurree variants. 
CIndex will contain the incrementing Function Command Index, while Data will vary 
depending on the Command. For example, DDPPUU__TTaasskkCCrreeaatteeFFuunnccttiioonn will return the 
created Task ID in DDaattaa[[  00  ]]. 
 
The Response Buffer runs forward, and the entire Reply word will be zero in the next 
Response if it is not ready yet. Do not use SSttaattuuss..BBuuffffeerr..RReessppoonnsseeIInnddeexx. 

Reading Warnings during a run 
The mask SSttaattuuss..BBaassiicc..WWaarrnniinnggss contains flags described in EEWWaarrnniinngg (common.h). To 
clear these flags during a run, set the same flags in SSttaattuuss..BBaassiicc..WWaarrnniinnggssSSeeeenn and wait 
until SSttaattuuss..BBaassiicc..WWaarrnniinnggssSSeeeenn is cleared. Do not set additional Warnings as seen until 
this is cleared by the DPU. 

Reading Faults during a run 
If a Fault occurs, SSttaattuuss..BBaassiicc..FFaauullttCCoouunntt will be 1 (the first Fault will stop all operation 
when running normally in ATLAS). Read SSttaattuuss..BBaassiicc..FFaauulltt[[  00  ]] to get the file (upper 
halfword) and code (lower halfword). 

Reading Status during a run 
Other values in the Status struct such as priorities or index/counters should not be used 
for anything except debugging. The Response Buffer gives all the information that the 
HPU needs to keep state with the DPUs. Using any other items introduces complex 
timing and synchronization issues that may lead to incorrect values. These items exist in 
the Status struct only to make them available to the entire DPU and for diagnostics. 
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Setting up for a new run 
When the run ends (caused by sending the oorrHHaalltt Order), SSttaattuuss..BBaassiicc..IInniittiiaalliizzee will be 
set back to ffaallssee and SSttaattuuss..BBaassiicc..BBoooottSSttaattuuss will return to TTSSttaattuuss::::bbssBBaassiicc. To start a 
new run, there are a few items to check before setting this back to true: 
 

••  SSttaattuuss..BBaassiicc..OOrrddeerr  
Set this to TTSSttaattuuss::::oorrNNoonnee. 

••  SSttaattuuss..BBuuffffeerr..PPaarraammeetteerrAArrrraayy  
If any Parameter sets were changed during the run, they can be set back to their 
original values now. 

••  SSttaattuuss..BBuuffffeerr..PPaarraammeetteerrSSiizzee  
The corresponding sizes should also be adjusted. 
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DPU documentation for the plug-in writer 

Getting started 
A plug-in generally consists of a single header file, though a source file may also be 
needed. Both files must be assigned file numbers and added to the list of files in Fault.h 
as follows: 
 
DPU_FAULT_FILE( 0x4309, "file.cpp" ) 
DPU_FAULT_FILE( 0x430A, "file.h" ) 

 
Decoders are numbered 0x43??, Functions are numbered 0x53??, and Tasks are 
numbered 0x63??. These numbers will be reported in the upper halfword of any Faults in 
these files and must be unique. 
 
The header file must also be added to the corresponding list of plug-in headers: 

• Data\decoders\include.h 
• Command\functions\include.h 
• Scheduling\tasks\include.h 

 
The line in the list of headers is a simple include with no path (the file should be located 
in the same folder as include.h): 
 
#include "file.h" 

 
To register a plug-in, it must be added to the corresponding list of plug-ins: 

• Data\decoders\decoders.h 
• Command\functions\functions.h 
• Scheduling\tasks\tasks.h 

 
Details on the specifics of these registration macros are contained in the comments for 
these files. More than one plug-in (of the same type only) can be in a single header file, 
but each must be registered separately. 
 
The source file must be added to the batch file MAKE.bat in order to be compiled. It 
should be added to end of the OOPPTTIIOONNSS__FF33 line: 
 
set OPTIONS_F3=Data\decoders\file.cpp 

 
Any time the number 10,000 DSP clocks is mentioned as a limit, this refers to the total 
Main Line processing time including UUppddaattee(()) and Management System overhead. 
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Boilerplate 
Header, top 
// ------------------------------------------------------------ 
//  Data\decoders\file.h  My Decoders for a DPU, by John Smith 
// ------------------------------------------------------------ 
 
 
// This file will be included specially, so no protection is needed 
 
 
// Check file version number 
 
#ifndef DPU_VERSION_1_40 
  #error "Assertion Failed: Incorrect Data\\decoders\\file.h version" 
#endif 
 
 
// Include the C6x intrinsics 
 
#include <c6x.h> 
 
 
// Include the basic definitions used everywhere 
 
#include "..\\..\\common.h" 
 
 
// Include the HAL headers 
 
#include "..\\..\\HAL\\Status.h" 
#include "..\\..\\HAL\\Policy.h" 
#include "..\\..\\HAL\\Queue.h" 
 
 
// Include the Decoder header file 
 
#include "..\\decoder.h" 
 
 
// Set this file's number (must be after all includes) 
 
#define DPU_FILE_NUMBER  0x430A 
 
 
 
// This file adds to the DPU::Data::MyDecoder namespace 
 
namespace  DPU 
{ 
  namespace  Data 
  { 
    namespace  MyDecoder 
    { 
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Header, bottom 
// ----------- 
//  Namespace 
// ----------- 
 
 
// This file adds to the DPU::Data::MyDecoder namespace 
 
    } 
  } 
} 
 
 
// Clear this file's number 
 
#undef DPU_FILE_NUMBER 

 
Source, top 
// -------------------------------------------------------------- 
//  Data\decoders\file.cpp  My Decoders for a DPU, by John Smith 
// -------------------------------------------------------------- 
 
 
// Check file version number 
 
#ifndef DPU_VERSION_1_40 
  #error "Assertion Failed: Incorrect Data\\decoders\\file.cpp version" 
#endif 
 
 
// Include the basic definitions used everywhere 
 
#include "..\\common.h" 
 
 
// Include the corresponding header file 
 
#include "file.h" 
 
 
// Set this file's number (must be after all includes) 
 
#define DPU_FILE_NUMBER  0x4309 
 
 
 
// ----------- 
//  Namespace 
// ----------- 
 
 
// This file adds to the DPU::Data::MyDecoder namespace 
 
namespace  DPU 
{ 
  namespace  Data 
  { 
    namespace  MyDecoder 
    { 
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Source, bottom 
// ----------- 
//  Namespace 
// ----------- 
 
 
// This file adds to the DPU::Data namespace 
 
    } 
  } 
} 

 
 
This is boilerplate used in most DPU files. The exact headers to include vary, but most all 
plug-ins will likely need Status.h and Policy.h to access the Status struct and Policy 
namespaces. Queue.h is needed by all Decoders and some Tasks to access the DIB and 
DOB. The file Decoder.h should be replaced with Command.h or Task.h as appropriate. 
 
There is no special restriction on the namespace, but a unique namespace under the Data, 
Command, or Scheduling namespace is appropriate for Decoders, Functions, and Tasks, 
respectively. 
 
The file version line must be updated whenever the DPU software version is changed. 
There is a macro in the batch folder that does this automatically, so be sure to add any 
new files to the list in batch\list.txt so that it is updated. 
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Policy namespaces 
As was discussed in the description of the Policy subsystem, plug-ins have the choice of 
whether they use the constants for a specific mode or whether they use the variables for 
the current mode. Using the constants is more limiting but it allows for maximum 
performance. 
 
To isolate this decision from the code, plug-ins (especially Decoders) should create their 
own local namespace and bring the appropriate constants or variables in with using 
statements. For example: 
 
// ------------------- 
//  Policy namespaces 
// ------------------- 
 
 
// Namespace used for my special timeslices 
 
namespace PolicyTimeslice 
{ 
  using Policy::Public::InputEventLength 
  using Policy::Private::InputMyTimeslice::InputFrameSize; 
} 

 
In this case, we are using the public (run-time) version of EEvveennttLLeennggtthh and the private 
(mode-specific constant) of FFrraammeeSSiizzee for input. To support this, we need to check this in 
CCaannIInniittiiaalliizzee(()): 
 
bool  CanInitialize() 
{ 
  if ( Policy::Public::InputEventLength != 
       PolicyTimeslice::InputEventLength )  return  false; 
  if ( Policy::Public::InputEventLength != 
       Policy::Public::OutputEventLength )  return  false; 
  if ( Policy::Public::InputMaxPacketLength  != 1 )  return  false; 
  if ( Policy::Public::OutputMaxPacketLength != 1 )  return  false; 
  if ( Policy::Public::InputFrameSize != 
       PolicyTimeslice::InputFrameSize )  return  false; 
  if ( Policy::Public::InputFrameSize  != 
       PolicyTimeslice::OutputFrameSize )  return  false; 
  return  ( ( Status.Basic.InputData == TStatus::itMyTimeslice ) && 
           ( Status.Basic.OutputData == TStatus::otMyTimeslice ) ); 
} 

 
The first check makes sure that the current mode uses the same IInnppuuttEEvveennttLLeennggtthh that we 
are using. The second check makes sure that both output and input use the same 
EEvveennttLLeennggtthh (useful for Decoders that copy input to output...otherwise output will 
generally be in the local Policy namespace as well). The third and fourth checks look for 
fixed-length input and output, which is simpler to test against 1 rather than bringing 
MMaaxxPPaacckkeettLLeennggtthh into the local Policy namespace. The fifth and sixth checks do the 
same thing for IInnppuuttFFrraammeeSSiizzee that the first and second do for IInnppuuttEEvveennttLLeennggtthh. Finally, 
the last check makes sure the basic data types match what we expect. 
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With these tests, we can handle overrides as long as IInnppuuttFFrraammeeSSiizzee and 
OOuuttppuuttFFrraammeeSSiizzee don't change and both input and output remain fixed-length. If we 
wanted to change the Decoder (or cut/paste a new version) to use any FFrraammeeSSiizzee or to 
bind to a constant EEvveennttLLeennggtthh, we only have to touch the local Policy namespace; all the 
tests in CCaannIInniittiiaalliizzee(()) are fine. 
 
There is one very important warning: 
 
DO NOT ATTEMPT TO UUSSIINNGG THE LOCAL POLICY NAMESPACE! 
 
The following code will NOT work: 
 
namespace PolicyTimeslice 
{ 
  using Policy::Public::InputEventLength 
  using Policy::Private::InputMyTimeslice::InputFrameSize; 
} 
 
using namespace PolicyTimeslice; 

 
This seems like a clever shortcut, but the namespace lookup rules for C++ cause this to 
fail miserably. Always be explicit and write it out, such as writing 
PPoolliiccyyTTiimmeesslliiccee::::IInnppuuttFFrraammeeSSiizzee in the case above. 
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Faults and asserts 
All files should use the macro functions FFaauulltt(()) and aasssseerrtt(()) to report errors (common.h). 
FFaauulltt(()) checks remain in the final system, while aasssseerrtt(()) checks exist only in debug 
mode. It is important that any time-consuming checks use aasssseerrtt(()) to preserve 
performance. 
 
A call to FFaauulltt(()) with a unique Fault code for the file produces a Fault, so the check 
should be done in a conditional. aasssseerrtt(()) works the same way as a standard C++ aasssseerrtt(()) 
macro. When a FFaauulltt(()) or failed aasssseerrtt(()) occurs, the system stops processing and enters 
an infinite loop doing nothing. This allows for debugging using the HPU or emulator. 
 
A Fault is reported in Status.Basic.Fault[ 0 ] with the file code in the upper halfword and 
the Fault code in the lower halfword. An assert is reported the same way, but the Fault 
code will have the high bit set and the remaining bits will be the line number for the 
assert. All Faults should be entered into fault.h but asserts are not. The entries in fault.h 
should appear directly below the file's entry and include the function/method that invoked 
a Fault and a brief message: 
 
DPU_FAULT_CODE( 0x0001, "Execute, Multi-command too small" ) 
DPU_FAULT_CODE( 0x0002, "Execute, Command Index was out of sequence" ) 
DPU_FAULT_CODE( 0x0003, "Execute, Function out of range" ) 

 
Because of the nature of the separation between the DPU software framework and the 
individual plug-ins, it should not be necessary to perform any special testing of the 
framework when new plug-ins are added. Normal testing of the plug-ins, as designed by 
the plug-in creator, should be sufficient. These would typically involve using the plug-in 
for a large period of time in both typical and atypical conditions. All asserts should be 
enabled during this or any other testing (except performance testing). 
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Decoders 
Decoders are derived from the base class TTDDeeccooddeerr and overload the virtual functions 
CCaannIInniittiiaalliizzee(()), IInniittiiaalliizzee(()), EExxeeccuuttee(()), and TTeerrmmiinnaattee(()). CCaannIInniittiiaalliizzee(()) shall return true if 
and only if the Decoder works in the current mode. IInniittiiaalliizzee(()) and TTeerrmmiinnaattee(()) are 
invoked only if CCaannIInniittiiaalliizzee(()) returned true, and EExxeeccuuttee(()) is invoked to process one 
Event. If EExxeeccuuttee(()) can't complete the necessary processing in 10,000 DSP clock cycles, 
it should return without popping and continue during the next invocation. 
 
Below is our sample Decoder that copies input to output: 
 
// --------------- 
//  My Timeslices 
// --------------- 
 
 
// Decoder that takes fixed-length timeslices and copies to output 
//  Override: Supported for EventLength 
//            Needs InputFrameSize == OutputFrameSize 
//            and InputEventLength == OutputEventLength 
 
class  TMyTimesliceDecoder : public  TDecoder 
{ 
 public: 
 
 
// CanInitialize virtual function 
 
...same as the example in the Policy namespaces section... 
 
 
// Initialize virtual function 
 
void  Initialize() 
{ 
 // Return 
  return; 
} 
 
 
// Terminate virtual function 
 
void  Terminate() 
{ 
 // Return 
  return; 
} 
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// Execute virtual function 
 
void  Execute() 
{ 
 // Get the event 
  const Queue::TPacket*  event = Queue::DIB.front(); 
 
 // Copy the event to output and push it on 
  for ( uint  i = 0; i < PolicyTimeslice::InputEventLength; ++i ) 
  { 
    uint*  dest = Queue::DOB.back(); 
    assert( dest ); 
    FastCopy< uint >( event[ i ].Payload, dest, 
                      PolicyTimeslice::InputFrameSize ); 
    Queue::DOB.push_fixed( Status.Processing.EventIndex ); 
  } 
 
 // Pop off the event 
  Queue::DIB.pop( PolicyRaw::InputEventLength ); 
 
 // Increment the EventIndex/EventCounter 
  ++volatile_value( Status.Processing.EventIndex ); 
  if ( !Status.Processing.EventIndex ) 
    ++volatile_value( Status.Processing.EventCounter ); 
 
 // Return 
  return; 
} 
 
 
}; 

 
The call to DDIIBB..ffrroonntt(()) returns an array of TTPPaacckkeett, each of which contains the members 
SSiizzee and PPaayyllooaadd for one Packet. SSiizzee contains the number of words in Payload, while 
PPaayyllooaadd contains the data for the Packet. Since we are only using fixed-length Packets 
here, we don't bother to check the redundant size information. If we were using a 
variable-length format that placed information in the upper halfword of the size word, we 
would need to mask before checking the size. 
 
A call to DDOOBB..bbaacckk(()) returns a pointer where the next output Packet should be written. 
This output is finished when DDOOBB..ppuusshh__ffiixxeedd(()) or DDOOBB..ppuusshh__vvaarriiaabbllee(()) (Queue.h) is 
called as appropriate to the data type, at which point DDOOBB..bbaacckk(()) will return the pointer 
for the next Packet to be output. 
 
After all the copying done, DDIIBB..ppoopp(()) is called with the number of Packets to be 
removed. If some Packets are shared between Events, this number may be less than the 
EEvveennttLLeennggtthh. EEvveennttIInnddeexx and EEvveennttCCoouunntteerr should also be incremented, but be sure to 
use the old value of EEvveennttIInnddeexx in any calls to DDOOBB..ppuusshh__ffiixxeedd(()) or 
DDOOBB..ppuusshh__vvaarriiaabbllee(()). 
 
FFaassttCCooppyy(()) is a template function in common.h that should be used for any large blocks 
of copies for optimal performance. If the source or destination needs to skip over 
intervening values, the alternative FFaassttCCooppyySSttrriiddee(()) is available. 
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Functions 
Functions are derived from the base class TTFFuunnccttiioonn and overload the virtual functions 
CCaannIInniittiiaalliizzee(()), IInniittiiaalliizzee(()), EExxeeccuuttee(()), and TTeerrmmiinnaattee(()). CCaannIInniittiiaalliizzee(()) shall return true if 
and only if the Function works in the current mode. IInniittiiaalliizzee(()) and TTeerrmmiinnaattee(()) are 
invoked only if CCaannIInniittiiaalliizzee(()) returned true, and EExxeeccuuttee(()) is invoked to perform the 
Command. If EExxeeccuuttee(()) can't complete the necessary processing in 10,000 DSP clock 
cycles, it should return without popping and continue during the next invocation. 
 
Below is a sample Function that returns the last Decoder used by the DPU. Since this is 
only going to be used in diagnostics, we will simply return the value sitting in 
NNeexxttDDeeccooddeerr (Command.h). This isn't entirely valid (such as when the run has just 
started), but will normally give what was the next Decoder before this Command was 
executed. To be a little safer, we will return failure if EEvveennttIInnddeexx is 0 since NNeexxttDDeeccooddeerr 
hasn't been written to yet: 
 
// --------------------------- 
//  Previous Decoder Function 
// --------------------------- 
 
 
// Function that returns the value of NextDecoder 
 
class  TDummyFunction : public  TFunction 
{ 
 public: 
 
// CanInitialize virtual function 
 
bool  CanInitialize() 
{ 
  return  true; 
} 
 
 
// Initialize virtual function 
 
void  Initialize() 
{ 
 // Return 
  return; 
} 
 
 
// Terminate virtual function 
 
void  Terminate() 
{ 
 // Return 
  return; 
} 
 



 123 

// Execute virtual function 
 
void  Execute( uint  CIndex, uint  Type, uint  Parameter ) 
// Type and Parameter are unused 
{ 
 // Respond with success and give the NextDecoder value 
 //  unless we haven't had an Event yet 
  if ( Status.Processing.EventIndex || Status.Processing.EventCount ) 
  { 
    Queue::Respond( reSuccess, CIndex, NextDecoder ); 
  } 
  else 
  { 
    Queue::Respond( reFailure, CIndex ); 
  } 
 
 // Pop off the command 
  Queue::CIB.pop( 1 ); 
 
 // Return 
  return; 
} 
 
}; 

 
CCaannIInniittiiaalliizzee(()) is trivial in this case since this function works in any mode. The primary 
responsibility of EExxeeccuuttee(()) is to give a Response and pop the Command out of the CIB. 
The extra two values to RReessppoonndd(()) are optional and their meanings depend on the context. 
In our case, DDaattaa[[  00  ]] (the first of the two values) is the value of NNeexxttDDeeccooddeerr and 
DDaattaa[[  11  ]] (the second value) is unused. When the Function fails, the values have no 
meaning. 
 
In this simple case, the value being returned was available simply by including 
Command.h, but this is not generally the case. Extra effort may be needed to access 
protected data in classes where no provision was made to read from the outside. 
 



 124 

Tasks 
Tasks are derived from the base class TTTTaasskk and overload the virtual functions 
CCaannIInniittiiaalliizzee(()), IInniittiiaalliizzee(()), SSiiggnnaall(()), OOuuttppuutt(()), TTeerrmmiinnaattee(()), CCaappttuurree(()), and SSeerrvviiccee(()). 
CCaannIInniittiiaalliizzee(()) shall return true if and only if the Task works in the current mode. 
IInniittiiaalliizzee(()) and TTeerrmmiinnaattee(()) are invoked only if CCaannIInniittiiaalliizzee(()) returned true. 
 
Tasks are able to schedule their CCaappttuurree(()) or SSeerrvviiccee(()) functions (one at a time, not both) 
to activate in a certain amount of time or on a certain Event number. CCaappttuurree(()) will not 
be activated early, but SSeerrvviiccee(()) can take place any time up to the specified limit. The 
intention is for CCaappttuurree(()) to quickly grab a copy of relevant, time-sensitive data and 
SSeerrvviiccee(()) to perform any complicated processing. This is critically important because 
multiple Tasks could coincidentally schedule their CCaappttuurree(()) at the same time. Moving 
work from CCaappttuurree(()) to SSeerrvviiccee(()) increases the likelihood that all CCaappttuurree(()) requests can 
be completed before the system is forced to move back to processing Events. If SSeerrvviiccee(()) 
can't complete the necessary processing in 10,000 DSP clock cycles, it should schedule 
another SSeerrvviiccee(()) and continue during the next invocation. Scheduling an additional 
CCaappttuurree(()) is possible for Event-based Tasks (not time-based) but is not recommended. 
 
Below is a sample Task that monitors the temperature reported by the EFPGA: 
 
// ------------------ 
//  Temperature Task 
// ------------------ 
 
 
// Task records at a non-zero time-based interval, runs until stopped 
//  Initialize with Parameter = interval (in microseconds) 
//  Output needs no parameter, single TAverage returned by pointer 
//  Terminate needs no parameter, single TAverage returned by pointer 
 
class  TTemperatureTask : public  TTask 
{ 
 protected: 
 
 
// Schedule interval (in microseconds) (set to zero to indicate a 
missed Capture scheduling) 
 
uint  Interval; 
 
 
// Next scheduled time (in microseconds) 
 
uint  NextTime; 
 
 
// Accumulating average 
 
TAverage  Average; 
 
 
// Average used for HPU communication 
 
TAverage  OutputAverage; 
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 public: 
 
// CanInitialize static function 
 
static bool  CanInitialize() 
{ 
  return  true; 
} 
 
 
// Initialize virtual function 
 
void  Initialize( uint  CIndex, uint  Parameter ) 
{ 
 // Running 
  Running = true; 
 
 // Store interval and next time 
  Interval = Parameter;  
  NextTime = Status.Processing.TimeIndex; 
  if ( !Interval ) 
  { 
    Queue::Respond( reFailureParameter, CIndex ); 
    return; 
  } 
 
 // Zero average 
  Average.CountLSW = 0; 
  Average.CountMSW = 0; 
  Average.SumLSW   = 0; 
  Average.SumMSW   = 0; 
  Average.Minimum  = 0xFFFFFFFF; 
  Average.Maximum  = 0; 
 
 // Schedule and Respond 
  NextTime += Interval; 
  if ( RequestTimeCapture( this, NextTime ) ) 
    Queue::Respond( reSuccess,         CIndex ); 
  else 
    Queue::Respond( reFailureResource, CIndex ); 
 
 // Return 
  return; 
} 
 
 
// Terminate virtual function 
 
void  Terminate( uint  CIndex, uint  Parameter ) 
{ 
  assert( Running ); 
  TTemperatureTask::Output( CIndex, Parameter ); 
  Running = false; 
} 
 
 
// Signal virtual function 
 
void  Signal( uint  CIndex, uint  Parameter ) 
{ 
 // Not supported 
  Queue::Respond( reFailureSupport, CIndex ); 
  return; 
} 
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// Output virtual function 
 
void  Output( uint  CIndex, uint  Parameter ) 
{ 
 // Check for previous inability to schedule 
  assert( Running ); 
  if ( !Interval ) 
  { 
    Queue::Respond( reFailureResource, CIndex ); 
    return; 
  } 
 
 // Copy for HPU 
  volatile_value( OutputAverage.CountLSW ) = Average.CountLSW ; 
  volatile_value( OutputAverage.CountMSW ) = Average.CountMSW; 
  volatile_value( OutputAverage.SumLSW   ) = Average.SumLSW; 
  volatile_value( OutputAverage.SumMSW   ) = Average.SumMSW; 
  volatile_value( OutputAverage.Minimum  ) = Average.Minimum; 
  volatile_value( OutputAverage.Maximum  ) = Average.Maximum; 
 
 // Respond and return 
  Queue::Respond( reSuccess, CIndex, 1, &OutputAverage ); 
  return; 
} 
 
 
// Capture virtual function 
 
void  Capture() 
{ 
 // Must not have missed a Capture scheduling 
  assert( Interval ); 
 
 // Stop now without reschedule if not running 
  if ( !Running )  return; 
 
 // Get the new temperature 
  int  temp = FPGA::EFPGAGetTemp(); 
 
 // Update Count 
  ++Average.CountLSW; 
  if ( !Average.CountLSW )  ++Average.CountMSW;  // LSW roll-over 
 
 // Update Sum 
  Average.SumLSW += temp; 
  if ( temp > Average.SumLSW )  ++Average.SumMSW;  // LSW roll-over 
 
 // Update min/max 
  if ( temp < Average.Minimum )  Average.Minimum = temp; 
  if ( temp > Average.Maximum )  Average.Maximum = temp; 
 
 // Schedule 
  NextTime += Interval; 
  if ( !RequestTimeCapture( this, NextTime ) )  Interval = 0; 
 
 // Return 
  return; 
} 
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// Service virtual function 
 
void  Service() 
{ 
 // Not used 
  Fault( 0x0002 );  // Service requested 
} 
 
}; 

 
All Tasks should use the RRuunnnniinngg bool in the TTTTaasskk base class to keep track of their state. 
Scheduling for CCaappttuurree(()) is done by calling the static function 
TTTTaasskk::::RReeqquueessttTTiimmeeCCaappttuurree(()); similar functions exist for Event-based operations and 
SSeerrvviiccee(()) requests. Because the processing is so trivial in this case, we do it in CCaappttuurree(()) 
rather than SSeerrvviiccee(()). 
 
Because there is no mechanism to get back into the CCaappttuurree(())/SSeerrvviiccee(()) queue (besides 
custom support in SSiiggnnaall(())), most Tasks will remain constantly in one of the two queues. 
When a Task is terminated, setting RRuunnnniinngg to ffaallssee can be used to inform the next 
CCaappttuurree(()) or SSeerrvviiccee(()) not to proceed. 
 
If a problem occurs during CCaappttuurree(()) or SSeerrvviiccee(()), a flag should be set so the problem can 
be reported to the HPU during the next OOuuttppuutt(()), SSiiggnnaall(()), or TTeerrmmiinnaattee(()). The problem 
cannot be reported immediately because the HPU is not expecting a Response from 
CCaappttuurree(()) or SSeerrvviiccee(()). 
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Software source code 
A complete copy of the source code can be found at http://www.cephira.com/thesis/. 
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Appendix B: K Physics in the FDQM 

Software source code 
A complete copy of the source code can be found at http://www.cephira.com/thesis/. 
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